Reassessing the Productivity Gains from Trade and FDI Liberalization: An Industry-Level Approach:

JaeBin Ahn, Era Dabla-Norris, Romain Duval, Bingjie Hu and Lamin Njie
International Monetary Fund

IMF-WB-WTO Joint Trade Workshop
June 29, 2015

Why...Again?

- Trade and FDI liberalization:
- Essential component of country and global policy agendas
- Welfare gains
- Productivity gains
- Challenges in quantifying gains from trade:
- Various channels
- Cross-country as well as cross-sector heterogeneity
- Interaction with structural factors
- This paper aims to tackle those challenges in country-sector-year set-up
- with a particular focus on the role of resource reallocation

Previous Theoretical Studies

- Firm-level productivity gains from trade liberalization
- Pro-competition channel
- Scale economies (Helpman and Krugman, 1985)
- Innovation incentives (Aghion et al, 2005)
- cf. Rodrik $(1988,1991)$
- Input variety channel
- Kasahara and Rodrigue, 2008; Gopinath and Neiman, 2014; Halpen, Koren, and Szeidl, 2015
- Technological spillover channel
- Industry-level productivity gains from trade
- Resource reallocation within a sector across firms (e.g., Melitz, 2003)
- Backward and forward linkages (e.g., Rodgriguez-claire, 1996)

Productivity Gains from Trade Liberalization

- Firm-level TFP gains via output and input market channels will be amplified by the resource reallocation process within each sector

Previous Empirical Findings

- Country-level studies
- Sachs and Warner (1995, BPEA); Frankel and Romer (1999, AER); Wacziarg and Welch (2008, WBER), etc.
- Carefully controlling endogeneity issues
- Difficult to identify specific channels
- Firm-level studies
- Amiti and Konings (2007, AER); Fernandes (2007, JIE); Topalova and Khandelwal (2011, ReStat)
- Indonesia; Colombia; India
- Separately identify output and input market effects
- Limited analysis of the role of resource reallocation

Contribution

- Building a unique, comprehensive database of tariff rates
- Incorporate various types of preferential rates beyond MFN rates
- Estimating output and input market channels separately
- Study relationship between output and input tariffs
- Explore interactions with structural factors across countries or country-sectors
- Investigating complementarities between trade and FDI liberalization
- Tariff and non tariff barriers; Trade in goods and services
- Policy simulations from potential reforms (not today)

Preview of Main Findings

- Dominant input market channels:
- Complementarity between output and input tariffs
- Stronger effect in more flexible economies:
- Labor market flexibility
- Product market regulation
- Complementarity between tariff and FDI regulations:
- Input (output) market channels stronger as FDI regulations are weaker in input (output) markets

DATA

- Sector-level TFP data from EU KLEMS and World KLEMS
- 17 countries with up to 18 sectors over 23 years
- Tariff data from TRAINS/WITS
- Comprehensive tariff information
- MFN, GSP, RTA, PTA, bilateral preferential rates, etc
- Trade data from UN Comtrade
- Other country- or country-sector level data on the market flexibility
- Employment Protection Index, Product Market Regulation Index, FDI restrictiveness index (OECD).

Tariff Rate Data Construction

- Comprehensive measure at the product level

$$
\tau_{t}^{i, g}=\sum_{j}^{N^{\text {MRN }}} w_{i j}^{g} M F N_{t}^{i j, g}+\sum_{j}^{N^{\text {perf }}} w_{i j}^{g} P R E F_{t}^{i j, g}+\sum_{j}^{N_{i j}^{\text {pomMN }}} w_{i j}^{g} N O N M F N_{t}^{i j, g}
$$

- Raw data at HS8-10 level from TRAINS/WITS
- weights from initial year's bilateral HS6 trade data
- Aggregate up to 2 digit ISIC sector level (Output tariff)
- weights from initial year's aggregate HS6 trade data
- Incorporate IO tables (Input tariff)

$$
\tau_{t, i, \text { ipput }}^{i, j}=\sum_{k} \alpha_{j k}^{i} k_{t, \text { output }}^{i, k},
$$

where $\alpha_{j k}^{i}$ is the share of imported inputs from sector k in total inputs used in sector j

MFN vs Effective Tariff

- The effective tariff measure tends to be lower and more volatile than the simple average of MFN rates
- By accounting for other preferential rates

MFN vs Effective Tariff

- The effective tariff measure tends to be lower and more volatile than the simple average of MFN rates
- By accounting for other preferential rates

The Evolution of Tariff Rates

- Relatively little variation among advanced countries
- Potential issue with country-level study

The Evolution of Tariff Rates

- Substantial variation across sectors even among EU countries
- Will be exploited along with variation in TFP growth

Empirical Strategy

- Baseline specification
$\ln T F P_{i s t}=\beta E P R_{i s t-j}+\gamma$ InputTariff $_{\text {ist }-j}+\delta\left(E P R_{i s t-j} \times\right.$ InputTariff $\left._{\text {ist }-j}\right)+F E_{i s}+F E_{i t}+\varepsilon_{i s t}$, where $E P R=\frac{\text { OutputTariff }_{\text {ist }-j}-\text { InputTariff }_{\text {ist }-j}}{1-(\text { Input } / V A)_{i s}}$
- Introducing interaction terms with other structural measures
- Identification strategy
- Aghion et al (2008, AER): state-industry level delicensing in India
- Productivity effects of delicensing
- Variation in labor market institutions across states

Output vs Input Tariff

Output and Input Tariff
(In deviation from country-sector and country-year average)

- Strong correlation between output and input tariff
- But not enough to generate collinearity concerns

TFP and Tariff: A Snap Shot

- Negative correlation between TFP and Tariff
- Stronger relationship in more flexible labor market countries

Regression: Baseline with Complementarity

Dependent variable:	$\ln ($ TFP)ist			
	$\begin{array}{r} (1) \\ j=1 \end{array}$	$\begin{array}{r} (2) \\ j=2 \end{array}$	$\begin{array}{r} (3) \\ j=3 \end{array}$	$\begin{gathered} (4) \\ j=4 \end{gathered}$
EPRist-j	$\begin{aligned} & -0.002 * * \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.002 * * \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.002 \text { * } \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.002 \\ & (0.001) \end{aligned}$
Effective Input Tariffist-j	$\begin{aligned} & -0.088 * * * \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.088^{* * *} \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.087 \text { *** } \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.086 * * * \\ & (0.014) \end{aligned}$
$\begin{aligned} & \text { EPRist-j } \\ & \times \text { Effective Input Tariffist-j } \end{aligned}$	$\begin{aligned} & 0.001 \text { *** } \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.001 \text { *** } \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.001 \text { *** } \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.001 * * * \\ & (0.000) \end{aligned}$
Country-sector FE	Yes	Yes	Yes	Yes
Country-year FE	Yes	Yes	Yes	Yes
Obs	3,292	3,044	2,796	2,548
(Adj)R squared	0.651	0.697	0.723	0.751

Standard errors in parentheses are clustered at the country-year level. Significance: * 10 percent; ** 5 percent; *** 1 percent.

- Strong and negative effect of input and output tariffs on TFP
- Dominant input channels; potential complementarity between input and output tariffs

Regression: Baseline with Complementarity

Dependent variable:	$\ln ($ TFP)ist			
	$\begin{array}{r} (1) \\ j=1 \end{array}$	$\begin{gathered} (2) \\ j=2 \end{gathered}$	$\begin{array}{r} (3) \\ j=3 \end{array}$	$\begin{gathered} (4) \\ j=4 \end{gathered}$
EPRist-j	$\begin{aligned} & -0.002 \text { ** } \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.002 * * \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.002 \text { * } \\ & (0.001) \end{aligned}$	$\begin{gathered} -0.002 \\ (0.001) \end{gathered}$
Effective Input Tariffist-j	$\begin{aligned} & -0.088 * * * \\ & (0.017) \end{aligned}$	$\begin{aligned} & -0.088^{* * *} \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.087 * * * \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.086 * * * \\ & (0.014) \end{aligned}$
EPRist-j \times Effective Input Tariffist-j	$\begin{aligned} & 0.001 \text { *** } \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.001 \text { *** } \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.001 \text { *** } \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.001 \text { *** } \\ & (0.000) \end{aligned}$
Country-sector FE	Yes	Yes	Yes	Yes
Country-year FE	Yes	Yes	Yes	Yes
Obs	3,292	3,044	2,796	2,548
(Adj)R squared	0.651	0.697	0.723	0.751

Standard errors in parentheses are clustered at the country-year level. Significance: * 10 percent; ** 5 percent; *** 1 percent.

- One s.d decline in effective input tariffs (-1.4\%) raises TFP by around 7\%, when EPR is at median level (0.6 ; U.S. electrical equipment)

Regression: Baseline with MFN Rates

Dependent variable:	$\ln ($ TFP)ist			
	(1)	(2)	(3)	(4)
	$j=1$	$j=2$	$j=3$	$j=4$
EPRist-j	-0.002	-0.002	-0.002	-0.003
	(0.002)	(0.002)	(0.002)	(0.002)
Effective Input Tariffist-j	0.003	0.008	0.014	0.014
	(0.020)	(0.020)	(0.022)	(0.022)
EPRist-j	0.000	0.000	0.000	0.000
\times Effective Input Tariffist-j	(0.000)	(0.000)	(0.000)	(0.000)
Country-sector FE	Yes	Yes	Yes	Yes
Country-year FE	Yes	Yes	Yes	Yes
Obs	3,292	3,044	2,796	2,548
(Adj)R squared	0.643	0.690	0.717	0.746

Standard errors in parentheses are clustered at the country-year level . Significance: * 10 percent; ** 5 percent; *** 1 percent.

- No such patterns when using simple average of MFN rates

Regression: Structural Factors

Dependent variable:	\ln (TFP)ist			
	(1)	(2)	(3)	(4)
	Rigidity $=($ EPL)i		Rigidity=(Severance Pay)i	Rigidity=(PMR)i
EPRist-3	$\begin{gathered} -0.002 \text { * } \\ (0.001) \end{gathered}$	$\begin{aligned} & -0.005 \text { *** } \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.010 \text { ** } \\ & (0.004) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.003) \end{aligned}$
Effective Input Tariffist-3	$\begin{aligned} & -0.087 * * * \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.132 * * * \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.190 \text { *** } \\ & (0.049) \end{aligned}$	$\begin{aligned} & -0.141 \text { *** } \\ & (0.036) \end{aligned}$
EPRist-3× Effective Input Tariffist-3	$\begin{aligned} & 0.001 \text { *** } \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.003 \text { *** } \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.005 \text { *** } \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.003 \text { *** } \\ & (0.001) \end{aligned}$
EPRist-3× Rigidity		$\begin{aligned} & 0.004 \text { *** } \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.006 \text { ** } \\ & (0.002) \end{aligned}$	$\begin{array}{r} 0.003 \\ (0.002) \end{array}$
Effective Input Tariffist-3× Rigidity		$\begin{aligned} & 0.055 \text { ** } \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.078 * * \\ & (0.033) \end{aligned}$	$\begin{gathered} 0.045 \text { * } \\ (0.026) \end{gathered}$
EPRist-3× Effective Input Tariffist- $3 \times$ Rigidity		$\begin{aligned} & -0.002 \text { *** } \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.003^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.002 \text { *** } \\ & (0.001) \end{aligned}$
Country-sector FE	Yes	Yes	Yes	Yes
Country-year FE	Yes	Yes	Yes	Yes
Obs	2,796	2,796	2,796	2,796
(Adj)R squared	0.723	0.725	0.726	0.724

Standard errors in parentheses are clustered at the country-year level. Significance: * 10 percent; ** 5 percent; *** 1 percent.

- Both channels stronger in more flexible labor or product market economies

Regression: Structural Factors

Dependent variable:	\ln (TFP)ist			
	(1)	(2)	(3)	(4)
	Rigidity $=(\mathrm{EPL}) \mathrm{i}$		Rigidity=(Severance Pay)i	Rigidity $=(\mathrm{PMR}) \mathrm{i}$
EPRist-3	$\begin{aligned} & -0.002 \text { * } \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.005^{* * *} \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.010 * * \\ & (0.004) \end{aligned}$	$\begin{array}{r} -0.005 \\ (0.003) \end{array}$
Effective Input Tariffist-3	$\begin{aligned} & -0.087 * * * \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.132 * * * \\ & (0.027) \end{aligned}$	$\begin{aligned} & -0.190^{* * *} \\ & (0.049) \end{aligned}$	$\begin{aligned} & -0.141 \text { *** } \\ & (0.036) \end{aligned}$
EPRist-3× Effective Input Tariffist-3	$\begin{aligned} & 0.001^{* * *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & 0.003 \text { *** } \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.005^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.003^{* * *} \\ & (0.001) \end{aligned}$
EPRist-3× Rigidity		$\begin{aligned} & 0.004 \text { *** } \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.006 \text { ** } \\ & (0.002) \end{aligned}$	$\begin{array}{r} 0.003 \\ (0.002) \end{array}$
Effective Input Tariffist- $3 \times$ Rigidity		$\begin{aligned} & 0.055 \text { ** } \\ & (0.028) \end{aligned}$	$\begin{aligned} & 0.078 \text { ** } \\ & (0.033) \end{aligned}$	$\begin{gathered} 0.045 \text { * } \\ (0.026) \end{gathered}$
EPRist-3× Effective Input Tariffist- $3 \times$ Rigidity		$\begin{aligned} & -0.002 \text { *** } \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.003 \text { *** } \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.002 * * * \\ & (0.001) \end{aligned}$
Country-sector FE	Yes	Yes	Yes	Yes
Country-year FE	Yes	Yes	Yes	Yes
Obs	2,796	2,796	2,796	2,796
(Adj)R squared	0.723	0.725	0.726	0.724

Standard errors in parentheses are clustered at the country-year level. Significance: * 10 percent; ** 5 percent; *** 1 percent.

- Input channel is about twice stronger in U.S. (coeff=-0.23 with EPL=0.26) than in Spain (coeff=-0.10 with EPL=1.63)

Regression: Complementarity with FDI Policy

Dependent variable:	$\ln ($ TFP) ist		
	(1)	(2)	(Indirect FDI Regulation) is
		(Direct FDI Regulation)is	
EPRist-3	$\begin{aligned} & -0.002 * \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.003^{* *} \\ & (0.002) \end{aligned}$	$\begin{array}{r} 0.000 \\ (0.003) \end{array}$
Effective Input Tariffist-3	$\begin{aligned} & -0.087^{* * *} \\ & (0.015) \end{aligned}$	$\begin{aligned} & -0.105^{* * *} \\ & (0.022) \end{aligned}$	$\begin{aligned} & -0.102 * * * \\ & (0.021) \end{aligned}$
EPRist-3x	$0.001^{* * *}$	0.002***	0.001*
Effective Input Tariffist-3	(0.000)	(0.000)	(0.000)
EPRist-3x		0.021***	0.009
FDI Regulation		(0.007)	(0.008)
Effective Input Tariffist-3×		0.285	0.423*
FDI Regulation		(0.246)	-0.249
EPRist-3x		-0.012**	-0.004
Effective Input Tariffist-3×		(0.005)	(0.003)
FDI Regulation			
Country-sector FE	Yes	Yes	Yes
Country-year FE	Yes	Yes	Yes
Obs	2,796	2,439	2,439
(Adj)R squared	0.723	0.723	0.723

Standard errors in parentheses are clustered at the country-year level . Significance: * 10 percent; ** 5 percent; *** 1 percent.

- Input (output) market channels stronger as FDI regulations are weaker in input (output) markets

Interim Summary and Policy Implications

- Dominant input market channels:
- Targeted trade policy design
- Stronger effect in more flexible economies:
- Structural reforms to maximize gains from trade liberalization
- Complementarity between tariff and FDI regulations:
- Scrapping non-tariff barriers to maximize gains from trade liberalization

Extensions

- Country-sector-year varying measures on structural factors
- Extending samples with labor productivity measure
- Checking robustness with labor productivity
- Checking (dis)similarity between advanced and emerging market economies
- Accounting for catch-up dynamics
- Dynamic analysis with sector-level PPP adjustments
- Can trade policies affect the speed of catch-up?
- Policy simulations
- Under hypothetical scenarios of potential reforms
- Advanced back-of-envelope calculations

