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Abstract

I present a new global value chain (GVC) framework in which intermediate input suppli-
ers produce specialized inputs that are only compatible with specific downstream uses. This
feature is confirmed by firm-level data and is at odds with the current GVC approach which as-
sumes that all products within a given industry utilize the same inputs. For example, Mexican
firm-level data shows that themanufacturing firms that export to theU.S. utilize relativelymore
U.S. inputs than those that export to other destinations. I show how the new GVC framework
can combine bilateral trade data with firm-level data in order to obtain GVC flows that reflect
the heterogeneity in the use of inputs observed in the latter. This reveals that 27% of the $118bn
of Mexican final good exports to the U.S. is U.S. value-added returning home. In contrast, the
current GVC approach yields a share of only 17% since it ignores the specialized inputs channel.
This discrepancy has serious implications for the ongoing renegotiation ofNAFTAas it suggests
that the potential costs of supply chain disruption are being understated. Lastly, I show how to
compute these counterfactuals with an extension of the influential sufficient statistics approach
to specialized inputs models and highlight important areas for future data collection.
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1 Introduction

As you read this paper, the North American Free Trade Agreement (NAFTA) is being renegotiated
for the first time since its inception in 1994.1 The stakes could not be higher. Canada, Mexico and
the U.S. account for over a quarter of world GDP, trade more than one trillion dollars amongst
themselves annually, and form one of the most integrated regional blocks.

At the same time, the specter of protectionism is at its strongest since the original signing of
NAFTA and the risks of supply chain disruptions triggered by an increase in trade barriers have
not been lost on many of the leading experts. Major news outlets, CEOs, concerned research in-
stitutions, and scholars have repeatedly warned about the potential losses to be incurred in such a
scenario. Despite the current administration’s negative rhetoric, even theU.S. Trade Representative
has acknowledged the risks by stating “Our objective is to, first of all, do no harm.”2

Supply chain disruption is highly costly because modern supply chains feature specialized in-
puts linkages, where intermediate input suppliers customize their goods to be compatible with
only specific downstream uses. For example, the lithium battery supplier in Apple’s famously
long iPod supply chain manufactures it exactly to the size of the metal frame while the screen sup-
plier ensures that the touch, color, and dimming capabilities are in line with Apple’s iOS software
(Linden et al. 2011). Today, this form of input compatibility is ubiquitous (Rauch 1999, Nunn 2007,
Antràs and Staiger 2012, Antràs and Chor 2013).

However, these linkages have yet to be incorporated into the workhorse model for estimat-
ing global value chains (GVCs, henceforth). GVCs are defined as the aggregate value of supply
chain flows across all products produced throughout a particular sequence of locations and need
to be estimated since the universe of product-level supply chain data is not available. The current
approach, based on Input-Output analysis (I-O, henceforth), shuts down the specialized inputs di-
mension and instead constructs GVCs by imposing the ironclad assumption that all goods within
a given industry utilize the exact same inputs. Since GVCs underlie the statistics proxying regional
integration, these shortcomings might be seriously misguiding the current trade policy debate.

I develop a new GVC measurement framework that is consistent with a class of structural spe-
cialized inputs models and fully characterizes GVCs with a set of primitives that can be measured
directly with firm-level data. Specifically, the primitives equal the dollar value of inputs used in
exports to a particular destination and can be constructed by summing up the inputs purchased
by the firms producing a specific type of export. For example, I leverage Mexican import-export
shipment data to obtain information about the cross-border supply chains underlying theMexican
primitives and this reveals that U.S. inputs are used relatively more for exports to the U.S. than in

1President Donald Trump provided Congress with the 90 day notice required prior to beginning negotiations on
May 18, 2017. The first round of negotiations began on August 16, 2017. Current U.S. fast-track law, under which the
U.S. Congress forgoes its constitutional right to amend a treaty andwhich is widely understood as a necessary condition
for finalizing a trade agreement with the U.S., expires on June 30, 2018. It is likely that the U.S. will try to finalize an
agreement by this date, though the President could request a three year extension.

2Committee on Ways and Means (2017). See the reports Wilson (2011), U.S. Chamber of Commerce (2015), Dziczek
et al. (2016), Blanchard (2017), and news articles/blogposts Sandbu (2017), Parilla (2017), Amiti et al. (2017), Murphy
(2017) and Donnan (2017).
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exports to other countries. I illustrate this for the vehicle industry in Figure 1.1, which shows that
the U.S. accounts for a colossal 74% of the foreign inputs embedded in Mexican vehicles sold to
U.S. consumers but for only 18% of the inputs of those sold to German consumers.3

The framework can be thought of as a generalization of I-O analysis in which the primitives de-
fine input shares that are conditional not only on the purchasing country-industry but also on the
subsequent supply chain through which inputs flow. GVCs are constructed recursively by using
these shares to impute the use of inputs at any upstream stage of production. This approach is thus
equivalent to a class of models that construct GVCs analogously and that parametrize their struc-
tural primitives by targeting the same set of equilibrium values. However, it is easier to use and
more versatile since it works directly with the primitives and avoids imposing a microstructure.

In practice, only partial snapshots of the universe of supply chain data are available and so I
embed themeasurement framework in an optimization problem that delivers values for the full set
of primitives. Specifically, I obtain the overall GVC picture by combining aggregate bilateral trade
data with rich micro-level data through a variant of a minimum-cost flow problem in two steps.
First, I impose a flow network that characterizes a class of structural specialized inputs models that
replicate bilateral trade flows. I do this by imposing a set of linear constraints that ensure that the
primitives aggregate up to match the observable bilateral trade data and that they represent an
internally consistent system. Second, I embed this GVC network in a minimum-cost flow problem
in which deviations from some set of targeted values are costly. I do this by imposing a quadratic
objective function throughwhich a researcher can incorporate additional sources of data or specific
priors over the complex supply chain flows present in today’s global economy.

Armed with this framework, I then study the depth of integration within the NAFTA region,
as proxied by Mexico-U.S. trade. While computing the input shares in Figure 1.1 is a purely data-
driven exercise, GVC flows are essential for studying integration since decomposing the sources of
value-added in Mexican exports requires tracing value across all upstream stages of production.
I obtain my GVC flows by mapping the Mexican microdata directly into the objective function so
that the GVCs crossing through Mexico reflect the empirical regularities exemplified in Figure 1.1.
The bilateral trade network is given by the data in the World Input-Output Database (WIOD).

My main empirical result is that U.S. value-added accounts for 27% of the $118bn of Mexican
manufactures purchased by U.S. consumers and contrasts with the current benchmark estimate
of 17%. Integration is particularly deep for Mexico’s main export sector, the motor vehicle indus-
try, where U.S. value-added accounts for 38% of the $35bn sold to U.S. consumers (17% in the
benchmark). The difference between these estimates is driven by the intensive use of U.S. inputs
in exports to the U.S. that is ignored when the specialized inputs channel is not taken into account
since this implies assuming that Mexico uses the same distribution of inputs for all of its exports.4

3The source is a confidential government-owned database reporting the universe of manufacturing import and
export shipments. I obtained overall input shares by assuming that, within a firm, every dollar of exports utilizes the
exact same content of imports. Though this might not be true in multi-product firms, there is little one can do to address
this issue sincewithin-firmdata is not available (seeManova andZhang 2012). Note that this assumption ismuchweaker
than assuming that the use of inputs is constant in every dollar of output at the industry level.

4Koopman et al. (2010) and De La Cruz et al. (2011) made a related point by splitting Mexican bilateral trade flows
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Figure 1.1: Distribution of Sources of Foreign Inputs Used in Mexican Final Good Vehicle
Exports to Consumers in Various Markets: Charts are constructed using the universe of
Mexican firm-level import/export shipment data for 2014 (see footnote 3).

The keymethodological contribution is that this GVC framework is easily adaptable and can in-
corporate additional information in a practical manner. While supply chain data is rarely publicly
available, many researchers have access to partial snapshots of the overall supply chains under-
lying global trade that are extremely informative about how intermediate inputs are used. My
empirical results focus on Mexico since I have access to Mexican microdata, but the tools can be
readily applied to study many other aspects of global production networks with other datasets.

This framework nests the current benchmark of roundabout production inwhich firms produce
intermediate inputs with intermediate inputs produced by upstream firms with the exact same
technology. This property conveniently implies that bilateral data fully, and uniquely, characterize
GVCs since the use of inputs at any stage of production is given by bilateral intermediate input
trade shares.5 More generally, this property defines the measurement framework of I-O analysis
(Leontief 1941) and the latter has been widely used to construct GVCs since it delivers the same
flows as any structural roundabout model that replicates bilateral data.

The downside of the roundabout approach is that it is sharply at oddswith the heterogeneity in
Figure 1.1. In reality, the aggregate use of intermediate inputs varies depending on the destination
of exports since it reflects the range of specialized inputs embedded in the set of products sold to
each country.6 For example, when Mexico exports Ford Fiestas to the U.S. it uses different inputs

across processing and non-processing trade. Though an useful approach, it is not practical nor easily replicable since
disaggregating bilateral trade data is often extremely challenging. In contrast, the tools I propose can be generally
applied to incorporate any type of extra information in a straightforward manner.

5More formally, there is a single set of GVC estimates that can be derived from a given bilateral trade database
utilizing roundabout models if one assumes that an industry in the model corresponds to an industry in the data (as is
typically done). In such a case, additional microdata is, in a sense, useless.

6There is ample evidence documenting within-industry variation in the use of imports and sales of exports. Exports
vary across destinations due to quality (Bastos and Silva 2010, Brambilla et al. 2012, Brambilla and Porto 2016, Ding
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than when it exports Volkswagen Beetles to Germany since each vehicle has its own technologi-
cal requirements and since both Ford and Volkswagen have separate supply chains. Roundabout
models ignore this variation since they assume that all firms, within a given industry, use the same
inputs.7 In practice, the data is available at such an aggregated level that this implies assuming
that every Mexican vehicle utilizes the exact same inputs.8

The specialized inputs channel thus paints a radically different GVC picture and has major
implications for trade policy since it provides a more integrated picture of Mexico-U.S. trade. In
particular, fears of supply chain disruptions stoked by GVC statistics that underplayed NAFTA
integration should be heightened once it is revealed that integration is actually much deeper.9

This is just one example of the wide scope of questions that can be answered more accurately by
leveraging firm-level data to enrich our knowledge about the GVCs underlying global trade.

I kickoff the paper in Section 2 by setting the stage and discussing why different theories of in-
termediate input use imply sharply different GVC flows. Specifically, a theory is required in order
to provide a lens for interpreting whatever data is available given that the lack of the universe of
supply chain data prevents this from being a purely data-driven exercise. The current benchmark
interprets bilateral data through the lens of the roundabout model and has far-reaching implica-
tions since it is a knife-edge case of a continuum of (observationally equivalent) specialized inputs
models. While specialized inputs models can be parameterized to deliver shares of U.S. value in
Mexican exports to the U.S. as low as 3% and as high as 40%, the roundabout model necessarily
implies 17%. Thus, firm-level data is crucial since it informs which GVCs are most accurate.

I then move beyond specific structural models and devote Section 3 to the broader specialized
inputs measurement framework that can handle the degrees of freedom arising from there being
a whole class of models consistent with the same bilateral data. I do this by defining GVC objects
themselves as the basic building blocks and this lets me recast any theory of intermediate inputs
as a guidebook for tracing the upstream input purchases of any sequence of production. Section 4

2017), trade regime (Dean et al. 2011, Koopman et al. 2012), and credit constraints (Manova and Yu 2016). The use of
imports varies across firm size (Gopinath and Neiman 2014, Blaum et al. 2017b, Antràs et al. 2017, Blaum et al. 2017a),
multinational activity (Hanson et al. 2005), firm capital intensity (Schott 2004), and the quality of output (Fieler et al.
2017). Since import and export activity is highly correlated (Bernard et al. 2007), these facts suggest that import use
depends on the destination of exports. See Manova and Zhang (2012), Bernard et al. (2017a), Bernard et al. (2017b).

7History provides some examples where this was accurate: During the 1800’s the U.S. imported pig iron for a wide
variety of uses (iron sheets, rails, bars, nails, wire, etc.) and not for a specific product (see Irwin 2000).

8There is, however, a literature that uses additional data to break up bilateral data into more disaggregate flows and
then apply a roundabout framework to the new database (Batten 1982, Golan et al. 1994, Canning andWang 2005, Dean
et al. 2011). If disaggregated enough, I-O analysis would be accurate since each Ford Fiesta and each Volkswagen Beetle
is (probably) built with the same intermediates. In practice, this is infeasible since specialized inputs structural models
dictate that the number of industrial categories required to overcome this issue is within the order of millions of sectors
(i.e. products) per country. This best illustrated by noting that the current state-of-the-art data, the WIOD, has only 56
sectors (20 in manufactures) and required a massive collaborative effort (see Timmer et al. 2015). This paper proposes a
different route by developing new tools for deriving different GVC estimates using the original database.

9That supply chains magnify the effects of protectionism has been argued repeatedly. Yi (2003), Yi (2010), Antràs
and de Gortari (2017), and Lee and Yi (2017) show that this is quantitatively true in general equilibriummodels. Kremer
(1993) argues that this “can paralyze production by preventing bottleneck sectors from being bypassed.” Barrot and
Sauvagnat (2016), Boehm et al. (2016), and Carvalho et al. (2016) use natural disasters to empirically measure the costs
of supply chain disruption. For counterfactuals on NAFTA, see Caliendo and Parro (2015) and Head and Mayer (2017).
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develops the optimization framework that shapes GVC flows with supply chain information.
I close the paper by deriving the tools for counterfactual analysis in a world of specialized

inputs since, ultimately, a major reason for measuring supply chain integration accurately is to
better evaluate the potential costs of protectionism. Section 5 takes the one sector, multi-country,
multi-stage, Ricardian general equilibrium model with international trade barriers and variety-
specific input linkages of Antràs and de Gortari (2017) and extends it to multiple sectors. The
latter entails a major innovation: with multiple sectors, specialized inputs linkages occur not only
as pure snakes but also as spiders (see Baldwin and Venables 2013). The first theoretical result is
that the model’s GVCs are consistent with the GVC framework developed in Sections 3 and 4 and
thus provides a microfounded justification for its use, much like roundabout models justify I-O
analysis. Secondly, I derive a formula for computing the welfare gains from trade that depends
on a few sufficient statistics and key elasticities. This is useful because the model’s direct use is
limited since it depends on a large number of (unknown) parameters.

Unfortunately, the lack of cross-country supply chain data makes it hard to obtain estimates for
the counterfactual gains from trade in practice. In the context of roundabout models, the sufficient
statistics literature (Dekle et al. 2007, Arkolakis et al. 2012) claims that “micro-foundations are not
particularly important for determining a trade model’s macro-economic implications” since the
change in welfare depends on the change in domestic expenditures (Allen et al. 2017). However,
this sufficiency is intimately linked to the assumption of roundabout production and is analogous
to the sufficiency of bilateral data for constructingGVCs. In contrast, the required sufficient statistic
in specialized inputs models is the expenditure share on goods produced through entirely domes-
tic supply chains.10 Since this data is rarely collected by statistical agencies, this renders the suf-
ficient statistics approach an empirically elusive one until we obtain richer data. Moreover, while
the specific microfoundation may not matter within a class of models, the welfare gains across
roundabout or specialized inputs models may vary substantially (Antràs and de Gortari 2017).

This paper fits into a new literature that constructs GVCs through the lens of specialized inputs
models. So far, intermediate inputs, accounting for two-thirds of world trade, have been widely
studied albeit mainly through roundabout production models as exemplified by the structural
gravity literature (see Krugman and Venables 1995, Eaton and Kortum 2002, Balistreri et al. 2011,
di Giovanni and Levchenko 2013, Bems 2014, Caliendo and Parro 2015, Ossa 2015, and Allen et al.
2017). The current empirical GVC literature has built its foundation on these models and con-
structed its GVCs with I-O analysis to study vertical specialization (Hummels et al. 2001, Johnson
andNoguera 2012), tracing value (Koopman et al. 2014,Wang et al. 2013), downstreamness (Antràs
et al. 2012, Fally 2012, Antràs and Chor 2013), the factor content of trade (Trefler and Zhu 2010),
value-added exchange rates (Bems and Johnson 2017), international inflation spillovers (Auer et al.
2017), and business cycle synchronization (di Giovanni and Levchenko 2010, Johnson 2014, Duval
et al. 2016, di Giovanni et al. 2017). Meanwhile, the international trade field has shifted profoundly

10The standard formula does not apply since the partial elasticity of relative imports from two sources depends on
trade costs with third countries and so the macro-level restriction “the import demand system is CES” in Arkolakis et al.
2012 does not hold. Section 5 discusses this in detail while Appendix Section B.4 presents a formal proof.
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over the last two decades to an approach emphasizing firm heterogeneity (Melitz and Redding
2012) and this has influenced a small but increasingly important set of specialized inputs struc-
tural models as in Yi (2010), Costinot et al. (2012), Antràs and Chor (2013), Fally and Hillberry
(2016), Johnson and Moxnes (2016), and Antràs and de Gortari (2017). This paper intends to serve
as the GVC analog to the latter, just like I-O analysis is the GVC analog to roundabout models.

In terms of numerical work, the quadratic programming approach follows a long tradition of
exploiting linearity in order to solve for high-scale optimization problems in economics and de-
veloped by such giants as Kantorovich (1939), Koopmans and Beckmann (1957), Dorfman et al.
(1958), and Dantzig (1963). In particular, Samuelson (1952) is a major inspiration in that it utilized
linear programming to ask: How can bilateral exports be determined if we only observe aggregate
exports? This paper tackles a corollary: How can GVCs be determined if we only observe bilateral
exports? Relatedly, the field of regional science has occasionally used these tools for the data rec-
onciliation process of building I-O tables when parts of the data are not observed (Harrigan and
Buchanan 1984, Canning and Wang 2005, Miller and Blair 2009).

Finally, the roundabout approach has been enormously influential beyond trade. Samuelson
(1951) provided the key insight that I-O analysis is consistent with the equilibrium of a constant
returns to scale production economy. Subsequently, intermediate inputs have beenwidely incorpo-
rated in the form of roundabout production in the macroeconomics literature following the sem-
inal I-O models of Domar (1961), Hulten (1978), and Long and Plosser (1983) to study business
cycles (Basu 1995), growth (Jones 2011), misallocation (Jones 2013, Bigio and La’O 2016, Caliendo
et al. 2017), aggregate fluctuations (Acemoglu et al. 2012, Carvalho and Gabaix 2013, Carvalho
2014, di Giovanni et al. 2014, Baqaee 2014, Baqaee and Farhi 2017), and development accounting
(Bartelme and Gorodnichenko 2015, Cuñat and Zymek 2017). While Leontief (1941) is the bedrock
of this literature, it could be extended to incorporate more complex production networks featuring
specialized inputs linkages.

2 The Hunt for GVCs: The Challenge

I begin by framing the challenge of constructing GVCs with bilateral trade flows in the presence of
specialized inputs linkages. Specifically, I illustrate, through the lens of toy models, that bilateral
trade data can be explained by a wide range of supply chain models and that the literature has so
far focused on the special case of roundabout production.

2.1 Observable Data

Let J be the set of countries of the world and suppose that the world economy is such that there is a
single good, calledwidgets, that can be produced and traded. Luckily, we observe the bilateral flow
ofwidgetswithX (j ′, j) being the aggregate sales from j ′ to j ofwidgets used as intermediate inputs
and with F (j ′, j) being the aggregate sales of j ′ to j of widgets that are consumed as final goods.
Gross output Y (j) equals aggregate widget sales and gross domestic product GDP (j) equals the
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former minus intermediate input purchases

Y (j) =
∑

j ′∈J
X
(
j, j ′
)
+
∑

j ′∈J
F
(
j, j ′
)

, GDP (j) = Y (j) −
∑

j ′∈J
X
(
j ′, j
)

.

I refer to the collection of X (j ′, j) and F (j ′, j) as the world input-output table (WIOT).

2.2 A Toy Roundabout Production Model

I illustrate the roundabout approach through a very stylized model in which I make the following
simplifying assumptions: (i) technology is Cobb-Douglas, (ii) market structure is perfect competi-
tion, (iii) labor in each country is normalized to one, and (iv) preferences are such that country j
spends a share αj ′j of its income on widgets from j ′. Since production features constant returns to
scale it is useful to work directly with prices (the dual). Country j sells widgets at unit price

pj =
(
wj

)βj

∏

j ′∈J

(
pj ′
)πj ′j




1−βj

, (1)

where wj is the wage (or GDP), βj is value-added share, and
∑
j ′∈J πj ′j = 1.

The final assumption is that of roundabout production where intermediate inputs require in-
termediates producedwith the exact same technology. That is, widgets are producedwithwidgets
and of each dollar of widget production in j a share 1−βj is spent on widgets used as intermediate
inputs and a share πj ′j of that on widgets from source country j ′. For now, I assume that the shares
πj ′j are a set of numbers fixed by nature but I will later show that the equations that characterize
the model’s equilibrium are isomorphic to the class of structural models that deliver gravity and
that vary mainly as to how πj ′j is microfounded. A key implication of roundabout production is
that the share of inputs from j ′ required to produce a widget in j is independent of where j sells
its own output to.

The equilibrium can be characterized bymapping it intoWIOT terms and defining a fixed point
that pins down wages. Specifically, intermediate input sales from j ′ to j can be found by noting
that gross output is given by wj/βj, that a share 1 − βj is spent on intermediate inputs, and that
a share πj ′j of that expenditure is spent on inputs from j ′. Meanwhile, final good sales between j ′

and j are determined by the share of income that j spends on these goods. The WIOT is then

X̂
(
j ′, j
)
= πj ′j

(
1 − βj

) wj
βj

, F̂
(
j ′, j
)
= αj ′jwj, (2)

where the hat indicates that these variables correspond to the simulated model and not to data.
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Wages are pinned down by equating income to value-added production11

wj =
∑

j ′∈J

(
X̂
(
j, j ′
)
+ F̂

(
j, j ′
))

−
∑

j ′∈J
X̂
(
j ′, j
)

. (3)

The equilibrium depends on the following free parameters: πj ′j, αj ′j, and βj. There is a single
parameterization such that the simulated model replicates the observable data. To see this, let the
relative shares of input and final good sourcing discipline πj ′j and αj ′j, and let the value-added to
gross output ratio inform the choice of βj. That is

πj ′j =
X (j ′, j)∑
i ′∈J X (i ′, j) , αj ′j =

F (j ′, j)∑
i ′∈J F (i ′, j)

, βj =
GDP (j)

Y (j)
. (4)

It is straightforward to check that the simulated WIOT equals the data, i.e. X̂ (j ′, j) = X (j ′, j) and
F̂ (j ′, j) = F (j ′, j) for all j ′, j ∈ J, and that this parameterization is unique.

I now use this toy model to show that the following two statements are true.

Fact 2.1. GVC statistics from roundabout production models and I-O analysis are equivalent.

Fact 2.2. GVC statistics from I-O analysis are uniquely determined by bilateral trade data.

Roundabout production models provide a structural justification for the computation of GVC
related empirical statistics. To see this, let me focus on value-added trade measures as studied
recently by Johnson and Noguera (2012) who show that value-added and gross trade balances
differ substantially and by Koopman et al. (2014) who quantify double-counting in gross exports
by explicitly taking into account the fact that value crosses borders multiple times. The common
feature across these statistics is that none of them are directly observable in bilateral trade flows.

The theory of roundabout production provides a lens for interpreting bilateral trade flows and
deriving value-added measures. Let π̃j ′j ≡ πj ′j

(
1 − βj

)
be the share of every dollar of j output

spent on inputs from j ′. Then, the share of every dollar of j output corresponding to value-added
produced in country j ′ can be computed by summing up the production of value across all up-
stream stages of production and across all sequences that deliver inputs to country j as

V̂
(
j ′, j
)
= βj ′1[j ′=j] + βj ′π̃j ′j + βj ′

∑

i∈J
π̃j ′iπ̃ij + βj ′

∑

i ′∈J
π̃j ′i ′

∑

i∈J
π̃i ′iπ̃ij + . . .

The first term represents domestic value added directly at production in j and thus appears only
if j ′ = j, the second term represents value added by j ′ directly into intermediates used by j, so
on and so forth. This decomposition can be written compactly by defining V̂ =

[
V̂ (j ′, j)

]
and π̃ =[

πj ′j
(
1 − βj

)]
asmatrices of size |J|× |J|, andβ =

[
βj
]
as a vector of size |J|×1. The decomposition

11Trade imbalances can be incorporated using the tools developed in Dekle et al. (2007) by defining final good flows
as as F̂ (j ′, j) = αj′j (wj −Dj), with Dj the dollar value deficit (if negative) or surplus (if positive). Note that this fixed
point applies also in microfounded models in which πij and αij depend on wages.
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of value-added by source country equals

V̂ ≡ diag {β} [I− π̃]−1 , (5)

and clearly
∑
j ′∈J V̂ (j ′, j) = 1 for all j ∈ J.

Note that the decomposition in equation (5) does not depend on the specific microfounda-
tion underlying πj ′j in practice. For example, the above equilibrium equations look exactly as
the one-sector version of the seminal Ricardian model of Eaton and Kortum (2002), with the ex-
ception that that model is more restrictive since it imposes πj ′j = αj ′j. More generally, tracing
value in almost any model that features gravity, as defined broadly in Costinot and Rodríguez-
Clare (2015) and Head and Mayer (2015), including Armington trade models (Bems 2014) where
each country produces a differentiated variety or extensions of imperfect competition models á
la Melitz (2003) to incorporate intermediate input trade (Balistreri et al. 2011), can be done using
equation (5). While different microstructures imply different mappings of deep structural param-
eters and general equilibrium variables to input expenditure shares π̃ and value-added shares β,
GVCflows are common acrossmodels since these are all parameterizedwith the goal of replicating
the same WIOT data in equilibrium.12 Importantly, this means that the Cobb-Douglas and perfect
competition assumptions imposed in equation (1) play no role on how GVCs are constructed.

Another way to say this is that (most) of the structural models that incorporate intermediate
inputs through roundabout production are part of the class of models consistent with the general
accounting framework of Input-Output analysis.13 Indeed, the empirical GVC literature defines
GVC statistics directly with I-O analysis and assumes the existence of technical coefficients denot-
ing the share of inputs from j ′ needed to produce a dollar of output in j. The latter are defined
directly with data as proportional to the share of aggregate intermediate input purchases

a
(
j ′ |j
)
≡ X (j ′, j)

Y (j)
=

X (j ′, j)
1

1−βj
∑
i ′∈J X (i ′, j)

, ⇒ a
(
j ′ |j
)
= πj ′j

(
1 − βj

)
. (6)

The second part shows formally that the above roundabout model is consistent with I-O analysis
since its input shares are parameterized so that it replicates bilateral trade data.

Hence, the empirical GVC literature is correctly specified under I-O analysis as long as re-
searchers believe that the data generating process underlying international trade flows is consistent
with a roundabout production model (Fact 2.1). Most importantly, the specific microfoundation

12The importance of the word equilibrium here is crucial since different models can obviously differ substantially
as to which variables adjust in order to achieve such equilibrium. When two structural roundabout production models
deliver the exact same WIOT flows, in equilibrium, then the decomposition of value-added trade will also match. In
practice, models often incorporate somuch structure that they cannot fit the data perfectly and thusmaydeliver different
estimates for value-added trade. However, these differences are entirely due to the lack of fit and not because these
different models have distinct implications over these statistics.

13Imperfect competition models with fixed costs can be tricky depending on how one maps the latter into bilateral
trade flows. When one assumes that fixed costs are capital investment, or final good consumption by the firm more
broadly, then these models are consistent with I-O analysis. However, matters can be complicated when fixed costs are
thought of as intermediate inputs and their unit costs differ from marginal costs.
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is irrelevant since the empirical GVC literature cares not about counterfactuals but about descrip-
tive economics and in equilibrium all of these models are observationally equivalent. This can be
exemplified with the decomposition of value-added by source which I-O analysis defines as

V ≡ diag {β} [I−A]−1 , (7)

whereA = [a (j ′ |j)] is thematrix of technical coefficients andwhere [I−A]−1 is commonly known
as the Leontief inverse matrix. Clearly V̂ in equation (5) exactly matches V.

A corollary of this discussion is that there are no degrees of freedom in how GVCs are con-
structed within the class of roundabout production models. That is, I-O analysis is fully character-
ized byWIOTdata and so there is a unique set of GVCflows consistentwith any given dataset if one
believes in the roundaboutmicrostructure (Fact 2.2).14 Naturally, the implications of counterfactual
analysis on GVCs will differ across models but this will be driven entirely by the counterfactual
equilibrium since the baseline is common. That said, there is an important ongoing debate arguing
on one side that a wide range of models deliver the exact same counterfactual analysis (Arkolakis
et al. 2012), and proxied by the change in aggregate domestic expenditures, while the other side has
argued that themargins of adjustmentmatter (Melitz andRedding 2015). Regardless, this debate is
largely driven by the roundabout production assumption since the the sufficiency of bilateral trade
flows for welfare occurs for the exact same reason that this data is sufficient for estimating GVCs.
However, both statements are only true in the absence of trade in specialized inputs and I will
argue in Section 5 that this is a somewhat moot debate since in reality these forces are ubiquitous.

2.3 A Toy Specialized Inputs Model

In reality, countries use different inputs when producing exports for different destinations, even
within narrowly defined sectors, since countries sell different varieties to different locations (see
Figure 1.1 and footnote 6). This empirical fact cannot be incorporated into roundabout production
models since they are characterized by input shares πj ′j that are independent of where output is
sold to (this is also true in multi-sector versions). A more general model with specialized inputs
linkages can incorporate this variation, since it is designed precisely for this purpose, but this
comes at the following cost.

Fact 2.3. GVC statistics from specialized inputs models are not equivalent to those from I-O analysis nor
uniquely determined by bilateral trade data.

I show this through the followingmodification: assume that now the price of country j’s widget
varies depending on the market i to which it is exported to

pj,i =
(
wj

)βj

∏

j ′∈J

(
pj ′,j

)πj ′j,i



1−βj

.

14Note that equation (7) depends on value-added shares that depend on GDP and gross output, the Leontief matrix
that depends on intermediate input flows and gross output, and on final good flows.
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Country j sells one unit of its widget in market i at pj,i and the variation across destinations is
driven by variation in the use of intermediate inputs. Specifically, I assume that country j spends
a share πj ′j,i on inputs from j ′ when selling to i and the input prices which country j itself faces
are given by pj ′,j since each source country j ′ uses its own specific supply chain for producing
widgets sold in market j. Hence, the variation in pj,i across export markets is driven by some
(currently unspecified) variation in the use of intermediate inputs.15 Note that this model nests
the roundabout production model, which arises whenever πj ′j,i is constant across destinations.

In terms of interpretation, the literal reading is that country j sets different prices in different
export markets because it builds the same good differently. This could happen as consequence of
trade policy in that rules of origin require goods to have a certain amount of regional content in
order to have access to zero or lower tariffs. Alternatively, amore useful interpretation is that coun-
tries actually produce a continuum of varieties of widgets and they sell different sets of widgets to
different markets. In a world with roundabout production this has no bearing over input shares
since the production of each variety of widgets uses the same intermediate inputs. In contrast, in
a world with specialized input linkages each widget variety requires a specific set of inputs. Thus,
the aggregate share of inputs used in j from source j ′ will vary depending on the destination of
its exports because it reflects the overall distribution of supply chains used to produce the widgets
sold in each market. In reality, this distribution may be a reflection of a diverse set of economic
forces such as compatibility or multinationals and will be explored further in Section 5.

The equilibrium of this model can be characterized as before in that F̂ (j ′, j) is given by the same
term as in equation (2) and the fixed point in equation (3) also applies. However, deriving bilateral
intermediate input flows is more intricate since gross output cannot be used to derive aggregate
input flows given that the use of inputs depends on the downstream use of output. Specifically, let
π̃j ′j,i ≡ πj ′j,i

(
1 − βj

)
be the expenditure on inputs from j ′ for every dollar of j exports to i. Overall

intermediate input trade between j ′ and j can be obtained by summing up the use of intermediates
at every upstream stage of production

X̂
(
j ′, j
)
=
∑

i∈J
π̃j ′j,iF̂ (j, i)+

∑

i ′∈J
π̃j ′j,i ′

∑

i∈J
π̃ji ′,iF̂

(
i ′, i
)
+
∑

i ′′∈J
π̃j ′j,i ′′

∑

i ′∈J
π̃ji ′′,i ′

∑

i∈J
π̃i ′′i ′,iF̂

(
i ′, i
)
+ . . .

(8)
The first term represents intermediate inputs from j ′ used by j to produce final goods, the second
term represents intermediate inputs from j ′ used by j to produce intermediate inputs that are em-
bedded directly into final goods, so on and so forth. Though an infinite sum, it is straightforward
to show that this can be computed exactly with the tools of linear algebra.16 Crucially, note that
here, in contrast to the roundabout production model, the pattern of intermediate input purchases

15This discussion refers to country j setting different prices at the dock (FOB, free-on-board prices) when exporting
to different locations. Of course, CIF (cost, insurance and freight) prices will differ across locations even in roundabout
production models when importer-exporter-specific iceberg trade costs are included though this has no consequence
on the relative use of intermediate inputs since trade costs are proportional to output.

16Let F̂ be a vector of size |J|
2 × 1 of the elements F̂ (j ′, j) ordered first along the first dimension and then along the

second dimension, let π̃j′j =
[
π̃j′j,1, . . . , π̃j′j,|J|

]
be a vector of size 1 × |J|, and let π̃ be the stacked up version of these

vectors ordered analogously to F̂ so that it is of size |J|2 × |J|. Define the auxiliary matrix Π̃ =
[
1|J|×1 ⊗ I|J|×|J|

]
∗ π̃, with
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is determined by the patterns of final demand.
The specialized inputs model depends on the following free parameters: πj ′j,i, αj ′j, and βj.

In contrast to the roundabout toy model, there is a continuum of parameterizations that replicate
WIOT data. To see this, first note that αj ′j and βj can be mapped as before into final good shares
and the GDP to gross output ratios as in equation (4). Input shares πj ′j,i are hard to discipline
since X̂ (j ′, j) is a construct depending on the whole set of shares

{
πj ′j,i

}
j ′,j,i∈J3 but in which there

is no direct way to reverse engineering a specific πj ′j,i from the data. It is only when input shares
πj ′j,i are common across all destinations the data X (j ′, j) provides a unique mapping into these
variables. Indeed this iswhat happens in roundabout productionmodels (i.e. equation 4). Another
way to put this is that bilateral intermediate input trade flows are a set of |J|2 numbers while πj ′j,i
are a set of |J|3 numbers. The difference between |J|

3 and |J|
2 drives the degrees of freedom that

imply a continuum of parameterizations for πj ′j,i that replicate the observable data.
Conceptually, the observable data is an aggregate of a rich micro-level data generating process

and the degrees of freedom reflect the fact that part of this richness is eliminated through aggre-
gation. The special case of roundabout production is the one case in which no information is lost
through aggregation and in which there no degrees of freedom. While this assumption cannot
be tested with WIOT data it can be tested using micro-level firm data and in practice, at least for
Mexico, it is firmly rejected (see Figure 1.1).

More generally, while different parameterizations of the specialized inputs model have no im-
plication on aggregate measures such as GDP or bilateral trade (by construction), they do have
enormous consequence on GVC related statistics. For example, suppose there are two sets of pa-
rameterizations that replicate WIOT data but in one πUSMEX,US is very low and in another it is
very high. It is then likely that the U.S. consumes more of its own value-added indirectly through
Mexico in the latter case than in the former.

In sum, the main takeaway from the specialized inputs model is that Facts 2.1 and 2.2 are not
true. First, the equivalence with I-O analysis disappears since input shares are not independent of
where output is sold to. Second, there is a continuum of GVC flows consistent with a given WIOT.

2.4 The Perils of Roundabout Production Models

I now show that the specialized inputs distinction has quantitative bite. Specifically, I simulate
1,000 specialized inputsmodels, while constraining each to replicate the sameWIOT, and show that

⊗ the Kronecker product and ∗ the Khatri-Rao product (Kronecker at the row level), of size |J|2 × |J|
2. Then

X̂ = Π̃
[
I
|J|2×|J|2 − Π̃

]−1
F̂,

where X̂ =
[
X̂ (j ′, j)

]
is a vector of size |J|2× 1. The decomposition of value-added by source country is now conditional

on where output is sold to and given by

V̂ ≡
[
diag {β}⊗ 11×|J|

] [
I
|J|2×|J|2 − Π̃

]−1
, (9)

where V̂ =
[
V̂ (j ′, j, i)

]
is the size |J|× |J|

2 matrix of value-added shares from j ′ in every dollar of sales from j to i.
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their GVCs vary substantially. I use the World Input-Output Database (WIOD) for the year 2014,
the state-of-the-art WIOT dataset (see Timmer et al. 2015 and Timmer et al. 2016), which contains
data for |J| = 44 countries. Since the rest of the paper focuses on manufactures, I aggregate the
data’s industrial dimension into two aggregate manufacturing and rest of the economy sectors and
apply two-sector versions of the above toy models.

Figure 2.1 plots the histogram for the joint distribution of the share of U.S. value-added in
Mexican final good manufacturing exports to the U.S. itself and to the rest of the world across
all simulations. More specifically, and keeping the one-sector notation for clarity, each simula-
tion constructs a set of

{
πj ′j,i

}
j ′,j,i∈J3 such that the simulated WIOT exactly matches the data, i.e.

X̂ (j ′, j) = X (j ′, j) and F̂ (j ′, j) = F (j ′, j) for all j ′, j,∈ J, and then computes the statistics of interest
with equation (9). The point of the histogram is not the distribution of values but rather the range
given that I plot a random (non-representative) set of 1,000 parameterized models.17 The solid
black lines represent the benchmark shares of 17% and 18%, in exports to the U.S. and the rest of
world, respectively, as backed out by the roundabout model with equation (5) or directly with I-O
analysis as in equation (7) using the more disaggregatedWIODwith 15 manufacturing sectors per
country (this will be the benchmark data later on).18

There is one key takeaway: The value-added trade statistics vary substantially relative to the
roundabout values. Hence, the recent international trade debate based on GVC statistics may have
been led seriously astray by Leontief since all of these simulations are observationally equivalent
and thus any could represent the true data generating process underlying the observed data. To
exemplify this, the share of U.S. value-added in Mexican exports to the U.S. has received a lot of
recent attention given the ongoing renegotiation of NAFTA and has been used as a proxy of supply
chain integration. Figure 2.1 reveals the perils of basing policy on the roundabout model, which
implies a U.S. value-added share of 17%, since this share may actually be as low as 3% or as high
as 40% and thus having vastly different implications on the depth of integration.19

17Obtaining a uniform sample is a computationally hard problem. Specifically, the specialized inputs toy model can
be mathematically defined as a system of linear inequalities describing a convex polytope. However, the dimensionality
of the polytope prevents me from obtaining a uniform sample. To put this into perspective, obtaining the vertices of the
convex polytope is a much simpler problem that is also very challenging. I applied the Lexicographic Reverse Search
algorithm of Avis and Fukuda (1992) and found that in the simplest case with |J| = 2 countries and a single sector the
null space describing the polytope is of size 16 × 2 and has 4 vertices that take 1/500 of a second to compute. Solving
for a marginally larger problem with |J| = 3 countries delivers a null space of dimension 54 × 12 and has 17, 542, 656
vertices and took 2 hours to compute. Increasing this to the size of a reasonable WIOT database is infeasible.

18Note that the share of U.S. value-added inMexican exports is the same regardless of where these are sold to within
each industry at the most disaggregate industrial level, but the share may differ at the aggregate manufacturing level
because Mexico sells slightly more to the U.S. in those industries in which the (aggregate) share of U.S. value-added is
lower. Alternatively, recomputing these shares on the aggregated two-sector WIOD delivers a common share of 15% to
any location and the mismeasurement relative to the above numbers reflects the industry aggregation bias.

19This critique applies generally to GVC statistics. Perhaps the most famous of which is the U.S.-China value-added
trade imbalance which Johnson and Noguera (2012) argued delivers a smaller deficit than when measured with gross
trade flows. Appendix Section D.1 shows that in 2014 the value-added trade imbalance is a $210bn deficit, when com-
puted with the roundabout model, and indeed lower than the gross trade deficit of $235bn. However, the specialized
inputs model delivers deficits of as low as $720bn or, actually, surpluses as high as $335bn.
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Figure 2.1: Share of U.S. Value-Added in Mexican Manufacturing Final Good Exports to
the U.S. and to the Rest of World in 2014 Using WIOD Data: The histogram plots the joint
distribution of these statistics across 1,000 simulations of the specialized inputs model us-
ing bilateral data with two aggregate sectors (manufactures and agriculture+services). The
solid black lines indicate the shares computed with the roundabout production model or
directly with I-O analysis in themore disaggregate database with 15manufacturing sectors.

2.5 Moving Beyond Roundabout Production: Specialized Inputs

In a nutshell, the literature has mismeasured GVCs because it has taken roundabout models at face
value and failed to internalize the decades-old critique of aggregation bias in I-O analysis.

First, the classical critique is that input shares vary across sectors so that I-O analysis ismisspec-
ified if the data is not disaggregated across narrow industrial categories.20 The roundabout pro-
duction literature has internalized this critique and moved towards multi-sector models in which
intermediate input shares across sectors, say vehicles and electronics, may vary. Nonetheless, I
show in Appendix Section C that this issue may still be prevalent in practice. I do this by conduct-
ing the following thought experiment: Take the domestic U.S. I-O tables at the 6-digit NAICS level
(with 237 manufacturing codes) and assume that in reality we only have access to the data at the
aggregate 3-digit level (with 19 manufacturing codes). I show that within each 3-digit category
there is substantial variation in the input shares across the more disaggregate 6-digit sectors and
this implies that one can at the very least claim that I-O analysis is misspecified at the 3-digit level.
This exercise is relevant since the WIOD has only 20 manufacturing sectors.

Second, the literature has not internalized the aggregation bias occurring evenwithin narrowly
defined industrial categories and driven by the rise of specialized inputs linkages. The previous
toy models were intended to convince the reader that this bias is important both in theory and
practice and that new tools need to be developed in order to estimate GVCs that can take into

20See Leontief (1949), Hatanaka (1952), McManus (1956a), and McManus (1956b).
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account the heterogeneity present in firm-level data such as in Figure 1.1. Doing this requires
heavier machinery since bilateral trade data no longer uniquely characterize GVCs.

The next two sections present a toolbox for estimating GVCs when both biases are present.
Specifically, one can think about the industry aggregation bias as moving from one-sector models
as in Eaton and Kortum (2002) to multiple sectors as in Caliendo and Parro (2015). For GVC esti-
mation purposes this implies using a more disaggregate WIOT with multiple sectors per country
and applying I-O analysis as the estimation framework. Meanwhile, the specialized inputs aggre-
gation bias requires moving beyond roundabout production as in Eaton and Kortum (2002) to a
world with specialized input linkages as in Antràs and de Gortari (2017). In terms of GVC esti-
mation this implies developing a newmeasurement framework that goes beyond I-O analysis and
that can estimate GVCs within a class of specialized inputs models.

3 Measurement Framework: Specialized Inputs

Trade economists have long focused on bilateral trade flows as the basic units of analysis and this
view is sufficient for studying GVCs in a roundabout production world. However, these tools are
inadequate in the presence of specialized inputs linkages and the literature’s focus on the former
has prevented the development of a unified framework that can be reconciled with richer theories
of intermediate input trade. This section resolves this issue.

3.1 GVC Definition

I introduce new notation that centers attention on GVCs as the central objects of interest andwhich
resolves the limitations of using bilateral trade variables as the basic building blocks. I define G (·)
as the key GVC object denoting the dollar value flow through a specific ordered set of country-
sectors all the way to final consumption. More specifically, in a single sector world let J be the set
of countries so that for j, j ′, j ′′ ∈ J the object G (j ′, j) denotes the dollar value that j ′ sells to j, and
which the latter uses for final consumption, while G (j ′′, j ′, j) is the dollar value that j ′′ sells to j ′

which j ′ uses as inputs for goods then sold as final consumption to j. In general, a GVC may be
specified through an arbitrary number of nodes so that I will add a superscript N indicating the
dimension of GN (·); i.e. N is the number of nodes previous to final consumption that are specified,
and throughout I will use jn to denote the nth node from final consumption. That is, instead of
G (j ′, j) I will write G1 (j1, j0

)
and instead of G (j ′′, j ′, j) I will write G2 (j2, j1, j0

)
. In a single-sector

world jn ∈ J ∀n and the n is only meant to indicate the dimension for which country jn is relevant.
The extension to a multi-sector world is immediate. Let K be the set of sectors and S = J×K

be the set of country-sectors. GVCs can be defined in the most general way as follows.

Definition 3.1. For any length N ∈ Z+, GN : SN × J → R+ is the function describing truncated
GVC flows leading to final consumption in countries in J through a sequence ofN upstream stages
of production given by an element of SN.
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A generic GVC is then GN
(
sN, . . . , s1, j

)
and I will refer to the elements of a country-sector pair

as sn = {jn,kn} with jn the country and kn the sector of sn. As before sn ∈ S ∀n and the n
is only meant to indicate the dimension of GN (·) for which sn is relevant. Examples are use-
ful for fixing ideas: a flow of length N = 1 could be G1 (s1, j

)
= G1 ({Mexico,cars} , U.S.), the

sales of Mexican cars to U.S. consumers, while a flow of length N = 2 could be G2 (s2, s1, j
)
=

G2 ({U.S.,car parts} , {Mexico,cars} , U.S.), the sales of U.S. car parts in the form of intermediate in-
puts that are used exclusively by the Mexican car industry to produce final goods sold to U.S.
consumers. Analogously for any N ∈ Z+ and any sequence of production in SN that produces a
final good eventually sold to consumers in some country in J.

I now explain why the word truncated appears in Definition 3.1.

Assumption 3.2. Let β : S→ (0, 1) be the value-added share such that for every dollar produced in s ∈ S

a share 1 − β (s) is spent on upstream inputs.

Since β (s) < 1, all production processes necessarily require intermediate inputs and thus GVCs
are of infinite length. The objectGN (·) is a truncatedGVCbecause it only specifies the flow through
N nodes of production even though its most upstream node, sN, also uses inputs and the full GVC
is characterized by an infinite number of nodes of production. A natural accounting relation that
should hold in the previous example is that

∑

t∈S
G2 (t, {Mexico,cars} , U.S.) = (1 − β ({Mexico,cars}))G1 ({Mexico,cars} , U.S.) .

On the right-hand side, G1 (·) indicates the dollar value ofMexican cars sold to theU.S. and (1 − β (·))
imputes the value of its aggregate intermediate input requirements by removing the value added
at this node. Meanwhile, G2 ({U.S.,car parts} , {Mexico,cars} , U.S.) is only one of many possible in-
put suppliers to the right-hand side so that the aggregation across all possible input sources t ∈ S

yields aggregate input sales to the downstream sequence on the right-hand side. More generally,
the following accounting relation need always hold

∑

t∈S
GN+1

(
t, sN, . . . , s1, j

)
=
(
1 − β

(
sN
))

GN
(
sN, . . . , s1, j

)
. (10)

That is, the aggregate intermediate input purchases of any sequence sN → · · · → s1 → j of any
length N ∈ Z+, as denoted on the right-hand side, must equal the aggregate intermediate input
sales to it from all upstream suppliers in t ∈ S as denoted on the left-hand side.

3.2 Relation to Observable Data

Needless to say, GN (·) is unobserved. Before discussing how GN (·) can be estimated I show how
these variables map into the data we do observe. Throughout this paper I will assume that the data
is available in WIOT format such that X (t, s) equals aggregate bilateral intermediate input sales
from t to swhile F (t, j) denotes aggregate final good sales from t to j, with t, s ∈ S and j ∈ J. Final
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good flows are simply equal to the simplest GVC object

F (t, j) ≡ G1 (t, j) . (11)

In sharp contrast, the full richness of GVC flows at more upstream stages of production are entirely
compacted into bilateral intermediate input flows. The latter are given by

X (t, s) ≡
∞∑

N=2

∑

lN−2∈S
· · ·
∑

l1∈S

∑

j∈J
GN
(
t, s, lN−2, . . . , l1, j

)
. (12)

Sales between t and s occur between any stagesN > 1 andN− 1, and conditional onN there exist∣∣SN−2 × J
∣∣ possible downstream uses of these exchanges. Aggregate bilateral intermediate input

flows equal the sum across all stages of production and all downstream uses.
Note that equations (11) and (12) describe the observable data in terms of the primitives GN (·).

Contrary to the current empirical GVC literature which takes WIOT data as the core building
blocks, I take the stand that the observable data is only a partial reflection of the true primitives
of interest and that they only mirror a limited amount of information. Hence, I will argue that
in order to do empirical GVC work one must take a stand on how to reverse-engineer the objects
of interest GN (·) from the observable data. Before I describe this issue in further detail, note that
equations (10), (11), and (12) readily imply that

β (s) =
Y (s) −

∑
t∈S X (t, s)

Y (s)
, with Y (s) =

∑

t∈S
X (s, t) +

∑

j∈J
F (s, j) . (13)

In other words, β (s) is the value-added to gross-output ratio of s.

3.3 The Fundamental GVC Estimation Problem

The empirical GVC literature’s key challenge is that we do not know how to deconstruct truncated
GVCs into their upstream input purchases. That is, the following mapping is unknown

GN
(
sN, . . . , s1, j

) ?−→ GN+1
(
t, sN, . . . , s1, j

)
. (14)

Equation (10) imposes an aggregate flow constraint that makes sure that aggregate input sales to
sequence sN → · · · → s1 → j equal this sequence’s aggregate input purchases. However, the input
purchases from each specific supplier t ∈ S is unknown.

Most theories of intermediate input trade can be recast as providing a solution to the mapping
in (14). In general, the resolution of the mapping is partially informed by the fact that aggregate
bilateral intermediate input sales are observed but this is hardly sufficient. The main motivation of
this paper is that up to now the literature has assumed that these flows are sufficient by invoking
the tools of I-O analysis as I show below. Instead, I will propose how to solve for the mapping in
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(14) in settings in which I-O analysis does not hold or, more colloquially, how to disentangle GVCs.
Finally, note that determining this mapping is a high-dimensional problem. In the most gen-

eral case the mapping between GN (·) and its upstream suppliers GN+1 (·) depends on the whole
sequence of GN (·). Since GN (·) can vary across up to

∣∣SN × J
∣∣ sequences and input shares need be

determined across all t ∈ S this implies that the full mapping between GN (·) and GN+1 (·) consists
of up to (|S|− 1)×

∣∣SN × J
∣∣ input shares. Splitting GVCs across a further upstream input stage in-

creases the number of input shares by a factor |S| so that the input shares to be determined increases
exponentially with N and is thus impossible to solve unless further structure is imposed. This is-
sue is even more salient when noting that Assumption 3.2 implies that GVCs can be decomposed
for any N and thus need be determined when N→∞.

3.4 I-O Analysis: The Roundabout Solution

The theories of intermediate input trade featuring roundabout production are the one case inwhich
bilateral trade data is sufficient for resolving the mapping in (14). More generally, Leontief (1941)
provided the key tool for constructing GVCs in this context by assuming a production process re-
quiring a fixed proportion of inputs for every unit of output produced. Specifically, define a (t|s)
as the technical coefficient determining the expenditure on inputs from t of every dollar of s pro-
duction. As before, the notation is defined so that it is explicit that input shares are conditional on
the purchasing industry s. Output can be decomposed into intermediate input expenditures and
value-added so that for all s ∈ S

∑

t∈S
a (t|s) + β (s) = 1.

These coefficients can be iterated so that a (s ′′|s ′)a (s ′|s) is the dollar expenditure on inputs from
s ′′ used by s ′ in the intermediates embedded in every dollar of s production. These relations can
be extended to any number of upstream stages of production and fully characterize production
processes (in equilibrium).

The empirical GVC literature has taken this view at face value and assumed that WIOTs are
defined such that every dollar of production requires the same input shares regardless of the stage
of production and where output is sold to.21 In particular, this theory imposes a simple solution
on the mapping in (14).

21A key, but often overlooked, point is that Leontief (1941) defined I-O analysis in terms of quantities while modern
GVC empirics implement it in terms of dollar-values. The technical coefficients that arise from each approach are only
equivalent to the true technological technical coefficients if a fixed proportions production function is assumed when
working with quantities while a Cobb-Douglas production function need be assumedwhen working with dollar-values
(cf. Burress 1994). However, as Samuelson (1951) pointed out, at a given equilibrium I-O analysis is well defined as
long as production features constant returns to scale. The stronger assumptions are needed in counterfactual analysis
in order to keep the technical coefficients constant across equilibria.
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Assumption 3.3. Input-Output analysis assumes that for all N > 1

GN+1
(
t, sN, . . . , s1, j

)
= a

(
t|sN

)
GN
(
sN, . . . , s1, j

)
. (15)

This solves the dimensionality problem since GVCs are constructed recursively and require only
final good flows G1 (s1, j

)
and technical coefficients a (t|s), which are all directly observed.

Note that I have still not defined preciselywhat the technical coefficients that solve themapping
in (14) are. The standard approach is to define them directly as an assumption. I now show that
actually we need not do so, they are already implied by the previous assumptions.

Lemma 3.4. The Input-Output analysis assumption in equation (15) implies that the aggregate input pur-
chases from t of s equals

X (t, s) = a (t|s) Y (s) . (16)

This follows from rearranging equation (12) and imposing the I-O analysis assumption in (15).
The left-hand side equals aggregate input purchases from t by s while the right-hand side equals
the product of the technical coefficient and gross output. Hence, I-O analysis requires a (t|s) to be
the term that relates aggregate output in s to its input purchases from t. This equation is crucial
because it shows that bilateral trade data are sufficient for characterizing GVCs in the presence of
roundabout production.

Corollary 3.5. The Input-Output analysis technical coefficients are given by

a (t|s) =
X (t, s)
Y (s)

=
X (t, s)∑
t ′∈S X (t ′, s)

(1 − β (s)) . (17)

The technical coefficients follow from rearranging (16) together with the definitions in (13).
Remember that Fact 2.1 claimed that roundabout structuralmodels deliver the sameGVC statis-

tics as I-O analysis. This occurs because these models impose a mapping of output to intermediate
inputs as in Assumption 3.3 and thus GVCs can be characterized with technical coefficients as in
(17). For example, look at the similarities with the toy roundabout model between (2) and (16),
and between (6) and (17). Furthermore, remember that Fact 2.2 claimed that I-O analysis has no
degrees of freedom. This is clear from (17) since the technical coefficients are fully characterized
by the observable data.

3.5 The Specialized Inputs Measurement Framework

Global trade is too complex to be studied solely through the lens of bilateral trade flows. Figure
1.1 showed that Assumption 3.3 fails when usingMexicanmicrodata while Section 2 described the
perils of overlooking these issues in a pair of toymodels. I propose a new solution for the mapping
in (14) by generalizing I-O analysis so that it can incorporate specialized inputs forces by imposing
a similar but more relaxed version of Assumption 3.3.
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Assumption 3.6. LetM ∈ Z+. The specialized inputsmeasurement frameworkwithM−proportional
input shares assumes that for all N >M

GN+1
(
t, sN, . . . , s1, j

)
= aM

(
t
∣∣∣sN, . . . , sN−(M−1)

)
GN
(
sN, . . . , s1, j

)
. (18)

The technical coefficients are now conditional on the immediateM downstream stages of produc-
tion. Whenever a GVC GN (·) is to be split into its direct upstream input purchases, the share
flowing from a specific supplier t ∈ S may differ depending on the immediate sequence of length
M through which these inputs will be further embedded into more downstream intermediate in-
puts. Note that M = 1 corresponds to standard I-O analysis, as in (15), and that M > 1 provides
a more flexible framework since the technical coefficients have more degrees of freedom. A useful
way of thinking about these generalized technical coefficients is that they represent anM−th order
Markov chain. I-O analysis is the simplest case in which input shares depend solely on the pur-
chasing country-industry while M > 1 implies that these input shares depend on the subsequent
M nodes of production (see Solow 1952).

There are at least two reasons why Assumption 3.6 is desirable. First, these input shares are
consistent with specialized inputs forces such as the input shares observed in the firm-level data
in Figure 1.1, while the special case of I-O analysis cannot. That is, when M >1 input shares may
vary depending on where the direct purchaser of these inputs sells its own output to. Second, in
Section 5 I develop a full-blown structural model with specialized inputs linkages that features
input shares of this nature. Thus, Assumption 3.6 can be rationalized by a class of models that
feature rich intermediate input sourcing strategies at odds with I-O analysis.

I now derive the general form that aM (·) takes. It is useful to define a generalization of the
gross bilateral input flows in (12) to gross input flows through longer sequences. Specifically, let
sM → · · · → s1 be a specific sequence ofM country-industry pairs. The gross input flow between t
and this sequence equals the sum of these exchanges across all upstream stages of production and
to be used through all further downstream sequences

XM
(
t, sM, . . . , s1

)
≡

∞∑

N=M+1

∑

lN−M−1∈S
· · ·
∑

l1∈S

∑

j∈J
GN
(
t, sM, . . . , s1, lN−M−1, . . . , l1, j

)
. (19)

Country-industry t sells inputs directly to sM to be further used through sM−1 → · · · → s1

at the upstream stage N = M + 1, and these flows are consumed in all j ∈ J. However, t also
sells inputs to be used through this specific sequence at upstream stage N = M + 2 and in this
case the flow is consumed in all j ∈ J but after flowing through any l1 ∈ S at the last stage of
production. Thus, input flows occur at all N > M and XM (·) represents the dollar value that
t sells to sequence sM → · · · → s1 across all stages of production and all further downstream
uses. This definition is a simple generalization of (12) since M = 1 equals the case in which in-
put use is conditioned only on the industry of purchase so that this variable equals bilateral in-
termediate input trade X1 (t, s1) = X

(
t, s1). An example with M = 2 could be X2 (t, s2, s1) =
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X2 ({China,steel} , {U.S.,car parts} , {Mexico,cars}) , the dollar sales of Chinese steel sold as interme-
diate inputs to the U.S. car part industry to be used exclusively in the production of intermediate
inputs that are sold directly to the Mexican car industry.

The notion ofM−proportionality is that we can obtain sufficient statistics that fully characterize
GVC flows as long as these statistics condition on a sequence ofM stages of production. Hence the
following generalization of Lemma 3.4 applies.

Lemma 3.7. The specialized inputs measurement framework with M−proportional input shares as in (18)
implies that the aggregate input purchases from t of a sequence sM, . . . , s1 equals

XM
(
t, sM, . . . , s1

)
= aM

(
t
∣∣∣sM, . . . , s1

)

∑

l∈S
XM

(
sM, . . . , s1, l

)
+
∑

j∈J
GM

(
sM, . . . , s1, j

)

 . (20)

This follows from rearranging equation (19) and imposing the specialized inputs assumption
in (18). The left-hand side equals aggregate input purchases from t by the sequence sM → · · · → s1

while the term in square brackets equals aggregate output of sM sold to sM−1 → · · · → s1. In other
words, sequence sM → · · · → s1 buys inputs, produces along this chain, and after s1 output is
used as further intermediate inputs sold to all l ∈ S but also as final consumption sold to all j ∈ J.
Hence, aM

(
t
∣∣sM, . . . , s1 ) is the term relating aggregate input purchases to aggregate input sales.

Corollary 3.8. The specialized inputs technical coefficients are given by

aM
(
t
∣∣∣sM, . . . , s1

)
=

XM
(
t, sM, . . . , s1)

∑
t ′∈SXM (t ′, sM, . . . , s1)

(
1 − β

(
sM
))

. (21)

The technical coefficients follow from rearranging (20) together with the definition of XM (·)
in (19) and the aggregate input flow constraint (10). The value of production flowing through
sM → · · · → s1 is entirely attributed to its factors of production since22

∑

t∈S
aM

(
t
∣∣∣sM, . . . , s1

)
+ β

(
sM
)
= 1.

The specialized inputs technical coefficients simply tell the share of inputs purchased from any
source t to be used for production at sM and to be embedded in goods sold through the down-
stream sequence sM−1 → · · · → s1.

Hence, just like GVCs based on I-O analysis are fully determined by bilateral trade data, the
GVCs GN (·) based on this framework can be derived recursively conditional on knowledge of the
M−stage gross input flows XM (·) and the baseline GVC GM (·). In practice, it is easier to work
directly withXM (·) thanwith aM (·) since the former permits a deeper exploitation of the linearity
embedded in this framework, though both approaches are equivalent because of Corollary 3.8.

22A natural question is whether it is appropriate to keep value-added shares constant. That is, why not define these
as β

(
sM, . . . , s1)? This is indeed an interesting question, but I leave it open to future research since this adds another

layer of complexity in that these shares need also be estimated. See Nomaler and Verspagen (2014).
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3.5.1 Relation to Specialized Inputs Toy Model

To fix ideas, let me briefly relate this framework to the above specialized inputs toy model. To do
this, first note that the model has a single sector so that S = J. Furthermore, input shares depend
only on the immediate use of output and thus correspond to a world in which input shares can be
characterized with primitives of length M = 2 (but not M = 1, since that would correspond to a
roundabout world). The primitives are then

X2 (j ′′, j ′, j
)
= π̃j ′′j ′,j

∑

i∈J
π̃j ′j,iF̂ (j, i) + π̃j ′′j ′,j

∑

i ′∈J
π̃j ′j,i ′

∑

i∈J
π̃ji ′,iF̂

(
i ′, i
)
+ . . . ,

G2 (j ′′, j ′, j
)
= π̃j ′′j ′,jαj ′jwj.

(22)

The overall flow of intermediate input sales from j ′′ to j ′ to be embedded in intermediates sold to
j can be computed by summing up these flows across all upstream stages of production and for all
downstream uses, while the overall flow of intermediate input sales from j ′′ to j ′ to be embedded
in final good sales to j is simply the proportion of the latter flow that uses inputs from j ′′. The
specialized inputs technical coefficients are given by equation (21) and equal

a2 (j ′′
∣∣j ′, j

)
= π̃j ′′j ′,j. (23)

I-O analysis is only correct in the knife-edge roundabout model: a2 (j ′′
∣∣j ′, j

)
= a1 (j ′′

∣∣j ′
)
= π̃j ′′j ′ .

3.5.2 GVC Statistics with Specialized Inputs

At the end of the day, the GVC primitives XM (·) and GM (·) are interesting in their own right
but, more importantly, are a means to the end of computing GVC related statistics in a world of
specialized inputs. All empirical GVC measures based on I-O analysis can be extended to this
framework and all that is missing is the mapping from these new objects into the old statistics.
I illustrate this by deriving the decomposition of final good exports into value-added by source.
This decomposition can be defined in general, regardless of the theory of intermediate trade we
impose, as follows.

Definition 3.9. The value-added from t ∈ S embedded in the final good exports of s ∈ S to con-
sumers in country j equals

VAt (s, j) = 1[t=s]β (s) F (s, j) + β (t)

∞∑

N=2

∑

lN−1∈S
· · ·
∑

l2∈S
GN
(
t, lN−1, . . . , l2, s, j

)
. (24)

The first term is the value that t embeds directly into final goods and appears only when t = s,
the second term includes the value produced in t at any upstream stage of production that is
eventually used by s to produce final goods sold to consumers in j. This decomposition is use-
ful for computing the dollar value of U.S. value-added that makes its way back to U.S. consumers
through Mexican final good exports, a key measure of integration within the NAFTA region. That
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is,
∑
t∈USA×K

∑
s∈MEX×K VAt (s, USA) is the total value produced in all U.S. industries and ex-

ported in Mexican final goods of all industries to U.S. consumers.
Ifwe arewilling to assume that the specialized inputs assumption in equation (18) is an accurate

theory of intermediate input trade, then this decomposition can be written with linear algebra
in a similar way to the Leontief inverse in I-O analysis. Throughout I will stack up individual
variables into vectors and the ordering is always done first along the first dimension, then along
the second, so on and so forth (see Appendix Section B.1 for details). To simplify notation, I will
refer to S and J as both the sets and the total number of elements contained therein. Let G (s, j) =[
GM

(
tM, . . . , t2, s, j

)]
be a vector of size SM−1 × 1 of the elements leading to final production in s

that is exported to j, and let the overall matrix G = [G (s, j)] of size SM−1 × SJ be the column-wise
stacked up version. Likewise, let aM (t) =

[
aM

(
t
∣∣sM, . . . , s1 )] be the vector of size 1 × SM of

technical coefficients for t inputs, as defined in equation (21). I can now generalize the Leontief
matrix by defining aM =

[
aM (t)

]
as the matrix of size S × SM of technical coefficients such that

the generalized Leontief matrix of size SM × SM is

AM = aM ∗
(
ISM−1×SM−1 ⊗ 11×S

)
, (25)

where ⊗ is the Kronecker product and ∗ is the column-wise Kronecker product (i.e. Khatri-Rao
product). Finally, let β = [β (s)] be the vector of size 1× S of value-added shares, define the vector
of gross-output to intermediate input purchases as β̃ = [1/ (1 − β (s))], and let β̃⊗n denote the
n−fold Kronecker product of β̃with itself.

Lemma 3.10. The specialized inputs measurement framework implies that value-added in final good exports
as in equation (24) can be decomposed as

VA = diag {β}



∑M−1
N=1

(
11×S ⊗ β̃⊗

(M−N−1)
)
⊗
(
diag

{
β̃
}
⊗ 11×SN−1

)

+
(
IS×S ⊗ 11×SM−1

)
+ aM

(
ISM×SM −AM

)−1



[
G ∗ (IS×S ⊗ 11×J)

]
.

(26)

In the special case in which I-O analysis holds this reduces to

VA = diag {β} [IS×S −A]−1
[
F ∗ (IS×S ⊗ 11×J)

]
. (27)

Thus VA = [VAt (s, j)] is the matrix of size S × SJ with row elements indexing the source
dimension t and columns indexing final good exports from s to market j. The terms in the big
parenthesis in equation (26) depend now on three terms instead of the Leontief inverse matrix that
arises in I-O analysis. The first two terms compute value-added directly observed through GM (·)
with the first tracing the value embedded in stagesN = 1, . . . ,M−1 and the second tracing the value
produced at stage N = M. Meanwhile, the last term computes value-added at all stages N > M

using a similar insight to the Leontief inversematrix. That is, value-added at these upstream stages
is computed with the recursion in equation (18) and is entirely summarized by the specialized
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inputs technical coefficients inAM. Indeed I will call
(
ISM×SM −AM

)−1
the generalized Leontief

inverse matrix since it summarizes all information contained in aM (·). The intuition is that it is of
size SM × SM since it embeds the knowledge of constant input shares across any sequence of M
production stages.23

This decomposition relates to the existing literature in threeways. First, empiricalGVCanalyses
have exclusively focused on the special case of I-O analysis which is nested within this framework.
Specifically, when I-O analysis holds the decomposition (27) yields the familiar value-added for-
mula as defined in Johnson andNoguera (2012). Second, in Section 3.4 I claimed that the use of I-O
analysis avoids the need of explicitly using GVC notation. This is revealed in (27) since it depends
solely on bilateral trade data while the broader notions of proportionality in (26) require the use of
aM (·) and GM (·), and which cannot be written solely in terms of WIOT data unless I-O analysis
is assumed. Third, though I have focused on the decomposition for final good exports it should
be stressed that all GVC statistics that rely on the Leontief inverse can be generalized similarly.
Though the derivation of these formulas is tedious and the notation cumbersome, they are easy to
compute in standard computers.24

3.5.3 Implementing the Specialized Inputs Measurement Framework

The key challenge for implementing this framework is that its primitives,XM (·) and GM (·) , are not
observed and have to be estimated. Thoughmore flexible than I-O analysis, it cannot be fully char-
acterized by bilateral trade data since there are many possible sets of primitives that are consistent
with the same observable data and it is not obvious how to recuperate the true ones.

The standard approach would be to use a structural model, such as the toy specialized inputs
model, but in which the input shares πj ′′j ′,j are microfounded. Indeed I show how one can do this
in Section 5, but there are two big drawbacks. First, a full-blownmodel depends on a large number
of parameters that may be very hard to discipline in practice. Second, even if this were possible
it is likely that the parameterized model does not fit the data perfectly and thus whatever GVC
estimates it delivers will be subject to the lack-of-fit error.

Instead, I argue in Section 4 that there is a more natural route in which this framework can
be implemented directly if we have at least some knowledge of the supply chain data underlying
bilateral trade flows. Before delving into these issues, I discuss the benefits and costs of modeling
proportionality more flexibly (i.e. the numberM takes).

23The invertibility of this matrix can be shown with arguments similar to those in Hawkins and Simon (1949). In the
words of Solow (1952), the necessary condition is that no group of industries be “self-exhausting”.

24In particular, the value-added deficit as defined in Johnson and Noguera (2012) can be computed with this same
formula. The value-added trade balance between, say, China and the U.S. is simply the difference between Chinese
consumption of U.S. value-added and U.S. consumption of Chinese value-added:

∑
t∈US×K

∑
s∈J×K VAt (s, China) −∑

t∈China×K
∑
s∈J×K VAt (s, US).
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3.5.4 How General Should the Measurement Framework Be?

In principle, as general as possible. That is, the space of GVCs that can be estimated from bilateral
trade data will always be bigger the higher M is. Conditioning input shares on longer sequences
of input use is desirable since more complex supply chains can be accommodated. To see this let
M,M ′ ∈ Z+ with M > M ′ and suppose the true GVCs involve technical coefficients of length M ′.
Working withM is not restrictive since technical coefficients can be defined as

aM
(
t
∣∣∣sM, . . . , s1

)
= aM

′
(
t
∣∣∣sM, . . . , sM−(M ′−1)

)
, (28)

and the true GVCs can be correctly backed out. Crucially, the converse is not true. If the true GVCs
require technical coefficients with M but M ′ < M is used then the GVCs that arise will be neces-
sarily biased since M ′ is imposing too stringent assumptions. For example, when the roundabout
model is true then both M =1 or M = 2 can back out the true GVCs, but when the specialized
inputs model is true the estimates can only be recovered withM = 2.

The tradeoff is that generality comes at a cost in dimensionality. Working with M ∈ Z+ re-
quires knowledge of XM (·) and GM (·) and the estimation framework will thus be of dimensional-
ity |S|

M (|S|+ |J|). I-O analysis is based on M = 1 and the dimensionality |S| (|S|+ |J|) corresponds
to the size of bilateral trade flows, and that is where the sufficiency comes from, while M > 1
requires more complex primitives and thus involves higher dimensionality.

In sum, roundabout production or I-O analysis exactly and uniquely correspond toM = 1 but
are also nested in the specialized inputs framework for allM ∈ Z+. WhenM > 1 the I-O technical
coefficients may arise, but this is far from necessary. The Mexican microdata clearly rejects M = 1
but is not rich enough to tell whether GVCs should be constructed with M = 2 or an even higher
M > 2 is required. In practice, the dimensionality problem curtails the magnitude of M and so in
the empirics of the paper I will simply useM = 2.

4 Implementation: The QP Framework

I propose aminimum-cost flowproblem that delivers estimates of the primitivesXM (·) and GM (·).
Conceptually, this exercise implements a class of structural specialized inputs models with prim-
itives that are observationally equivalent in equilibrium and where the specific underlying mi-
crostructure is irrelevant. This is exactly analogous to the connection between I-O analysis and
roundabout models, while there are many microfoundations for the latter the only thing that mat-
ters for GVC estimation is the numbers the trade shares take in equilibrium. The new challenge
is that there are many primitives consistent with the same bilateral data. Throughout I use the
word estimation in the sense that the optimization framework finds numerical values for a set of
variables, but this is not to be understood as estimation in a statistical inference sense.

I exploit the linearity embedded in the specialized inputs measurement framework in order
to use the tools of quadratic programming to tackle the high-dimensionality associated with this
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estimation. In order to illustrate the computational burden, note that at the end of this section I
implement this approach empirically with 24 countries, 17 sectors and the simplest generalization
withM = 2. In this case the primitives have 72 million degrees of freedom, given by |S|

M (|S|+ |J|),
while there are only 176 thousand datapoints, given by |S| (|S|+ |J|).

I exploit the degrees of freedom in three steps: (i) I constrain the primitives to be consistent
with the observable WIOT data, (ii) I constrain the primitives to represent an internally consistent
system, and (iii) I exploit the remaining degrees of freedom by allowing the researcher to incorpo-
rate additional information. Appendix Section A contains a graphical description of the numerical
method and is an useful companion to the main text.

4.1 The Linear Constraints

The first step is to determine a pair of relations that ensure that the primitives are consistent with
bilateral WIOT data. Since XM

(
t, sM, . . . , s1) is the aggregate input flow between t and sequence

sM → · · · → s1, note that
∑
t∈SX

M
(
t, sM, . . . , s1) is the aggregate input purchases of this se-

quence. Furthermore multiplying this sum by 1/
(
1 − β

(
sM
))
, the dollar output per dollar of

intermediate input purchases, imputes the value that is added at sM and thus provides the aggre-
gate input sales of sM to sequence sM−1 → · · · → s1. This logic can be repeated until obtaining
the aggregate input sales from s2 to s1, which is an observable data point in WIOTs. Thus, XM (·)
is consistent with bilateral intermediate input trade if the following holds

X (t, s) =
∑

lM+1∈S
· · ·
∑

l3∈S

XM
(
lM+1, . . . , l3, t, s

)
∏M
m=3 (1 − β (lm))× (1 − β (t))

. (29)

Likewise, GM (·) is consistent with bilateral final good trade if the following holds

F (t, j) =
∑

lM+1∈S
· · ·
∑

l3∈S

GM
(
lM+1, . . . , l3, t, j

)
∏M
m=3 (1 − β (lm))× (1 − β (t))

. (30)

The aggregate constraint on XM (·) in (29) is a direct implication of the definitions (12) and (19)
and the mapping in (10) while the aggregate constraint on GM (·) in (30) is a direct implication of
the definition (11) and mapping in (10). Equations (11) and (12) definedWIOT data as functions of
the underlying (unobserved) GVCs GN (·), but the observable data contains the former and not the
latter. Hence, the idea is tomake assumptions overGN (·), such as theM−proportional input shares
in (18), and reverse-engineer the primitives. These constraints ensure that the reverse-engineered
primitives are consistent with the observed WIOT data and resemble the capacity and required
flow constraints in minimum-cost flow problems.25

The second step is to ensure that the primitives determine an internally consistent system. Sum-
ming across t ∈ S in (20) and substituting 1 − β

(
sM
)
=
∑
t∈S a

M
(
t
∣∣sM, . . . , s1 ) delivers the

25To be fully clear, M is fixed throughout at some positive integer and the goal is to estimate the primitives XM (·)
and GM (·) so that theM−proportional recursion in (18) can be used to build GN (·) for all N ∈ Z+.
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following relation that forces the inflows and outflows of sequence sM → · · · → s1 to match

1
1 − β (sM)

∑

t∈S
XM

(
t, sM, . . . , s1

)
=
∑

l∈S
XM

(
sM, . . . , s1, l

)
+
∑

j∈J
GM

(
sM, . . . , s1, j

)
. (31)

The sum on the left-hand side is aggregate input purchases of sequence sM → · · · → s1 with
the scalar 1/

(
1 − β

(
sM
))

imputing the value of production at sM. Hence, the left-hand side is
aggregate input purchases of sequence sM−1 → · · · → s1 from sM. Meanwhile, the right-hand
side equals aggregate input sales from sM to sequence sM−1 → · · · → s1 when summing across
all its further downstream uses as intermediates or final goods. Thus (31) ensures that trade flows
across sequences of lengthM are consistent in levels or, to put it more bluntly, that everything that
comes in must come out.

To further provide intuition focus on the relation imposed in I-O analysis, i.e. whenM = 1

1
1 − β (s1)

∑

t∈S
X
(
t, s1

)
=
∑

l∈S
X
(
s1, l

)
+
∑

j∈J
F
(
s1, j

)
. (32)

The left-hand side equals aggregate input purchases by s1 with the scalar 1/
(
1 − β

(
s1)) imputing

the value of production of s1. The right-hand side equals aggregate sales of s1 and thus both sides
equal aggregate output of s1. This equation should be familiar since it is a key identity in national
accounting. Indeed, rearranging this equation yields the definition ofβ

(
s1) in (13) which is simply

the GDP to gross output ratio. That (31) is a generalization of (32) should not be surprising as they
have been derived similarly but with the latter imposingM = 1.

Though the whole point of this numerical framework is to avoid explicit structural modeling,
it is important to note that these constraints not only make sense from a purely logical standpoint
but also characterize a class of specialized inputs structural models. In order to fix ideas and relay
more intuition, focus on the specialized inputs toy model where S = J,M = 2, and with primitives
as in equation (22). Substituting into the first set of constraints delivers

∑

l∈J

X2 (l, j ′, j)
(1 − β (j ′))

= X̂
(
j ′, j
)

,
∑

l∈J

G2 (l, j ′, j)
(1 − β (j ′))

= F̂
(
j ′, j
)

,

where the hat variables correspond to the simulated WIOT of the structural model. But since the
toy model is parameterized to match the data, these primitives naturally satisfy the linear con-
straints in equations (29) and (30). Likewise, plugging in the structural primitives into each side of
the internal consistency constraint in equation (31) delivers

1
1 − β (j ′)

∑

t∈J
X2 (t, j ′, j

)
= X̂

(
j ′, j
)

,
∑

l∈J
X2 (j ′, j, l

)
+
∑

l∈J
G2 (j ′, j, l

)
= X̂

(
j ′, j
)

,

so that flows are indeed consistent along chains of lengthM = 2.
GVCs in the specialized inputs measurement framework are thus fully characterized by XM (·)
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and GM (·) and equations (29), (30), and (31) ensure that they deliver the same bilateral trade flows
as a specific WIOT database and that they represent an internally consistent system. The remain-
ing issue is that many XM (·) and GM (·) satisfy these relations since these linear constraints only
eliminate up to |S| (|S|+ |J|) + |S|

M degrees of freedom.

4.2 Exploiting The Degrees of Freedom

As a third and final step, I propose a minimization problem that permits a researcher to discipline
the estimates of XM (·) and GM (·) through her own priors or through other data sources while
satisfying the above constraints. In particular, the advantage of the constraints on this system is
that they are all linear. Let X and G be the stacked up vectors of XM (·) and GM (·) and define the
quadratic programming (QP) approach to estimating GVC flows as

min
{X,G}

Ξ(X,G) =1
2

[
X− cX

G− cG

]T
Q

[
X− cX

G− cG

]

s.t. X and G satisfy the bilateral data constraints (29) and (30)

X and G satisfy the consistency constraints (31)

X,G > 0

(33)

Appendix section B.1 shows how to write the constraints with linear algebra. This problem has a
unique global minimum as long asQ is positive semi-definite.

The constraints on the QP framework depend solely on X and G and observable data, while
the remaining degrees of freedom are eliminated in the objective function through the weighting
matrix Q, and the targets cX and cG. The latter penalize flows that are far from their targeted
values and resemble the minimization of total cost in minimum-cost flow problems. Throughout
this paper I will focus on the special case in which the weighting matrix has diagonal form so that
the objective function of the QP problem (33) becomes a weighted sum of squared differences

Ξ(X,G) =1
2
∑

qX

(
sM, . . . , s1, s0

)(
XM

(
sM, . . . , s1, s0

)
− cX

(
sM, . . . , s1, s0

))2

+
1
2
∑

qG

(
sM, . . . , s1, j0

)(
GM

(
sM, . . . , s1, j0

)
− cG

(
sM, . . . , s1, j0

))2
.

(34)

The intuition for this objective function is that cX and cG act as targets that shape the estimates
and this is where a researcher can incorporate her priors over the underlying data generating pro-
cess. The weights qX and qG rank the importance of matching each specific target. Defining this
as an optimization problem is necessary in order to impose the linear constraints and is a standard
tool for finding solutions in underdetermined linear systems.

The special feature of this particular quadratic program is that its linear constraints implement
a class of specialized inputs models. However, note that this program imposes stronger conditions
than what is standard procedure in the estimation of parameters in structural models in that it
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does not include bilateral data as moments to be fitted but rather imposes that they hold exactly.
This is feasible in practice because of the flexibility of workingwith the primitives directly, whereas
the microstructure in structural models is often too rigid for this to be possible. Finally, linearly
constrained quadratic programming is exceptionally suitable for this high-dimensional problem
because it has linear first order conditions whereas more sophisticated nonlinear objective func-
tions are very hard to solve for in practice.

The following lemma proves useful.

Lemma 4.1. Suppose X∗ and G∗ satisfy the linear constraints (29), (30), (31) and are non-negative. Let
the targets in the QP objective function be cX = X∗ and cG = G∗. Then the solution to the QP framework
for any positive semi-definiteQ is XQP = X∗ and GQP = G∗.

That is, the QP framework nests any solution that satisfies the constraints on (33). The proof of this
result is trivial since Ξ(X∗,G∗) = 0 and the solution is feasible. This result assures us that the QP
framework searches over the full set of specialized inputs models consistent with a specific WIOT.

A trivial application of Lemma 4.1 proves that I-O analysis is nested in the QP framework for
any M ∈ Z+. Specifically, note that the primitives associated with I-O analysis are

XM
I-O
(
sM, . . . , s1, s0) = a

(
sM
∣∣sM−1 ) · · ·a

(
s2 ∣∣s1 )X

(
s1, s0) ,

GM
I-O
(
sM, . . . , s1, j0

)
= a

(
sM
∣∣sM−1 ) · · ·a

(
s2 ∣∣s1 ) F

(
s1, j0

)
,

(35)

with a (·) the I-O technical coefficients in (17). To fix ideas, remember that the specialized in-
puts model with primitives in equation (22) nests the roundabout model. That is, X2

I-O (j ′′, j ′, j) =
π̃j ′′jX (j ′, j) and G2

I-O (j ′′, j ′, j) = π̃j ′′jF (j ′, j), with a
(
j ′′
∣∣j ′
)
= π̃j ′′j ′ as shown in equation (6).

Corollary 4.2. For anyM ∈ Z+, if cX = XI-O and cG = GI-O, then XQP = XI-O and GQP = GI-O.

This result is the QP parallel of equation (28) since technical coefficients withM ′ <M are also
consistent withM. The I-O GVCs are the unique solution whenM = 1 and this is the formal proof
of Fact 2.2. In this case the QP framework simply estimates a roundabout model that matches
bilateral trade data, abstracts away from the specific microstructure underlying the roundabout
primitives, and backs out the unique GVCs that could arise in this class of models. When M > 1
the exercise is analogous but within the class of specialized inputsmodels, the key difference being
that now there is a continuum of primitives that could fit the same observable data and the targets
cX and cG discipline which is chosen.

4.3 Incorporating Additional Sources of Information

It is easiest to explain how to incorporate new data through specific examples. The input shares for
Mexican vehicle exports in Figure 1.1 provide a glimpse of the supply chains that cross through
Mexico and can be used to discipline the primitives for Mexican production. For example, the
dollar flow of U.S. vehicle parts purchased by the Mexican vehicle industry to produce exports
sold to U.S. consumers, i.e. G2 ({USA, vehicle parts} , {MEX,vehicles} , USA), is observed. Defining
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the corresponding target cG (·) as this number and with the corresponding weight qG (·) as a large
positive number ensures that the QP framework targets this value. To name a more extreme ex-
ample, suppose that an insider at FedEx or UPS tells us that there is a specific supply chain which
never occurs. In such a case one could place the corresponding targets to zero and penalize devia-
tions highly. Researchers with access to other snapshots of the supply chains underlying bilateral
trade data can use that information to discipline their own GVC flows.

4.3.1 Incorporating Mexican Microdata

I now implement the QP framework using bilateral trade data from the WIOD for 2014 aggre-
gated to the world’s 24 largest economies and 17 industries per country, 15 in manufacturing plus
agriculture and services aggregates. I also incorporate the (confidential) Mexican firm-level data
containing the universe of manufacturing import and export shipments. The data has three impor-
tant drawbacks. First, domestic transactions are not observed and so it is hard to know whether
imported intermediate inputs are embedded in goods sold on the domestic market or whether ex-
ported goods require domestic intermediate inputs. Second, services trade is not observed and so
it is hard to know the linkages with manufacturing. Third, the data on intermediate input exports
contains information on the destination market but not to which industry.

These issues imply that the data cannot be readily used for the purposes of this paper without
additional assumptions. I make the restrictive assumption that Mexico exports are mainly com-
posed of processing trade, an obviously strong assumption and not fully accurate but not too far-
fetched forMexico since previous research has shown thatMexico is one of the two countries in the
world for which processing trade is most important (the other is China).26 Nonetheless, this is an
useful starting point since the goal of this paper is to show how its tools can be used. A researcher
that disagrees with these assumptions can make her own but keep the numerical procedure. Thus
we can begin a conversation about GVC estimation that cannot be done with I-O analysis.

The firm-level data then delivers proxies for the following primitives (written forM = 2)

∑

k∈K
X
({
j ′′,k ′′

}
,
{
MEX,k ′

}
, {j,k}

)
, for j ′′, j ∈ J\ {MEX} ,k ′′,k ′ ∈ KMAN,

G
({
j ′′,k ′′

}
,
{
MEX,k ′

}
, j
)

, for j ′′, j ∈ J\ {MEX} ,k ′′,k ′ ∈ KMAN,

where KMAN is the set of 15 manufacturing sectors. The first set of datapoints are aggregate man-
ufacturing intermediate input imports used by the Mexican manufacturing industries to produce
intermediate input exports. The second set of datapoints are aggregate manufacturing interme-
diate input imports used by the Mexican manufacturing industries to produce final good exports.
These datapoints are targeted in the QP framework by setting the corresponding targets cX (·) and

26See Koopman et al. (2010) and De La Cruz et al. (2011). Between 2000-2006, processing trade accounted for around
90% of manufacturing exports and was even higher for exports to the U.S.
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cG (·) to these values.27 Since I do not have microdata to discipline all other targets, I set these to
the benchmark I-O primitives in equation (35). Details are discussed in Appendix Section D.2.1.

4.3.2 Foreign and U.S. Content in Mexican Exports to the U.S.

Figure 4.1 shows how pervasive Mexico-U.S. supply chain integration is once GVC flows incorpo-
rate the intensive use of U.S. inputs in exports to the U.S. Specifically, the left panel depicts the
dollar value of final good exports in 2014 for each of the manufacturing sectors labeled on the y-
axis. The middle panel depicts the shares of foreign content in these exports while the right panel
plots the shares of U.S. content. In the last two panels, the (upper) blue bar depicts the shares de-
livered by a roundabout model, and computed with I-O analysis as given by the decomposition in
equation (27), while the (lower) pink bar presents the specialized inputs shares given by the GVC
flows from the QP framework and computed with equation (26).28

Mexico ismuchmore integratedwith both theworld andU.S. economies thanwhat our current
estimates imply. For example, I obtain that 38 cents of every dollar of Mexican vehicle exports to
U.S. consumers corresponds to value-added created in the U.S and a full 63 cents are re-exports of
value-added created abroad. Ignoring the specialized inputs channel predicts much lower shares
at 17 and 38 cents per dollar, respectively. The same is true for overall manufacturing final good
exports with the specialized inputs estimates standing at 27 and 60 cents per dollar, while the
roundabout estimates are 17 and 41 cents per dollar. Appendix Section D.2.2 presents the full
results including the decomposition for intermediate input and aggregate exports.

The U.S. content in overall manufacturing final good exports to the U.S. is partly attenuated by
the computers, electronics, and optical equipment industry which is more integrated with China
than with the U.S. Specifically, the Chinese value-added share increases from 11% in the round-
about estimates to 19% in the specialized inputs estimates while the U.S. share falls from 24% to
14%. The U.S. share in overall manufacturing when excluding this sector then increases from 15%
to 31%. Relative to foreign value-added, the U.S. content increases from 46% to 56%.

The deeper integration is driven for various reasons. First, the extreme but not too far-off as-
sumption of processing trade increases the share of foreign content in Mexican exports as seen in
the middle panel.29 Second, and more importantly, Mexico utilizes a disproportionate share of
U.S. inputs to produce exports to the U.S. in most industries and this pushes up the the share of
U.S. content relative to foreign content as discussed above. In particular, the U.S. share relative to
the foreign share in the final motor vehicle exports increases from 45% to 60%, thus mimicking the

27I assume that the distribution of intermediate inputs in the exports of intermediate inputs is independent of the
purchasing industry since the data does not contain this information (the shares do vary across countries).

28Solving the QP problem numerically with |J| = 24 and |K| = 17 takes about 5 days and requires around 100-150
GBs of memory when using Gurobi, the fastest solver for mathematical programming.

29Note that the high-processing trade assumption is offset with the high domestic value-added share. That is, the
value-added share β (s) is common at the industry level (see footnote 22 for a possible extension) and this underplays
the foreign content share in exports since domestic value-added should bemuch lower in processing trade. For example,
the share of domestic value added directly into final goods in the WIOD for the Mexican vehicle industry is 32%. In
contrast, De La Cruz et al. (2011) find that the total domestic value-added share (direct+indirect) is 25% for processing
trade and 69% for non-processing trade.
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Figure 4.1: Foreign and U.S. Content in Mexican Manufacturing Exports of Final Goods to
the U.S. The roundabout estimates are computed with I-O analysis while the specialized
inputs estimates are computed with the QP framework.

patterns in Figure 1.1. There is important heterogeneity, though. While the U.S. share in foreign
content in computers, electronics, and optical final good exports falls from 37% to 20% it increases
in intermediate good exports from 37% to 53%. Crucially, note that in the roundabout estimates
the 37% share is common across final goods and intermediate input exports but also in exports
to all destinations (see Appendix Sections D.2.2 and D.2.4 to view the shares for overall exports
to Canada, Germany, and the U.S.). In contrast, the shares in the specialized inputs estimates dif-
fer across both dimensions and this framework thus lets us study variation in value-added trade
across destinations and use of exports.

In sum, the small picture takeaway is that accounting for specialized inputs yields amuchmore
integrated view of Mexico-U.S. trade and this confirms the concerns regarding a potential increase
in trade barriers within the NAFTA region. The big picture take is that new data can be incorpo-
rated in order to ensure that GVC flows take the newly revealed empirical regularities into account.
I have posted the code that implements the quadratic programming framework permanently in
code.estimategvcs.com so that anyone can apply it immediately.

4.3.3 Local Information Has Local Effects

Though the overall structure of GVC flows is interdependent, I now show evidence that local data
has only local effects. That is, remember that the benchmark QP estimation targets the Mexican
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primitives with firm-level data but targets the primitives for all other countries using the I-O anal-
ysis values. Figure 4.1 clearly shows that the former have very important implications on GVC
statistics related to Mexico. However, this has little effects on GVC statistics that are not directly
linked to Mexico. For example, the left panel of Figure 4.2 shows the same comparison of U.S.
content shares but in Canadian exports to the U.S. The quantitative difference is negligible.

The local effects of local data is a positive feature since it implies that researchers can focus on
obtaining a limited amount of additional data in order to study a specific statistic. First, note that
this result is not generally true across any network structure. Rather, global trade networks are
so concentrated that indirect linkages often have second or third order effects and so while Mexi-
can microdata is key for understandingMexico-U.S. trade it is almost irrelevant for understanding
Canada-U.S. trade even though Canada is the third member of NAFTA. Second, this also suggests
that the new estimates of Mexico-U.S. integration are accurate in the sense that including addi-
tional Canadian, Chinese or Japanese microdata would change them little. The exception is U.S.
microdata which would likely have a substantial effect.

4.3.4 Robustness

I present two robustness tests in Figure 4.2. First, statistical offices often struggle trying to deter-
mine whether production is used as an intermediate or final good. Since it is rarely possible to
know what output is being used for (i.e. by destination industry or consumers), they regularly
infer the use by the type of product according to well-established classifications. For example, it
is fairly certain that a car will be used as final consumption while it is also fairly certain the iron
ore will be used as an intermediate. The middle panel in Figure 4.2 shows the results for the case
in which intermediates and final goods cannot be distinguished and in which the relative use of
inputs from s ′′ by s ′ is common across all exports to j regardless of what they are used for (i.e.
cX (s ′′, s ′, s) /cG (s ′′, s ′, j) = X (s ′, s) /F (s ′, j) whenever s = {j,k}). The results are mostly similar.

Second, though processing trade is very important in Mexico one might wonder how much it
influences GVC flows. The right panel of Figure 4.2 presents the results when lowering the use of
foreign inputs in exports to only 75% and increasing the use of foreign inputs in domestic sales to
25%.30 There is still an increase in U.S. content but this is substantially lower than in the case in
which I impose full processing trade. Specifically, the share of U.S. content in motor vehicle final
exports is now only 30%while the overall final goodmanufacturing share is 22%. When excluding
computers, electronics, and optical equipment the share of U.S. content increases to 25%.

The lack of domestic expenditures prevents me from accounting for the varying importance of
processing trade in exports to each country accurately. However, the consensus is that processing
trade is most important for Mexican exports to the U.S. and this makes sense since these countries
share one of the most transited borders worldwide. For example, Pastor (2008) mentions how

30Note that these shares correspond to what is put into the targets of the QP framework. The optimization problem
then finds the closest GVC flows such that all of the linear constraints are satisfied and, in practice, this lowers the degree
of processing trade (often substantially). This can be seen in Appendix Section D.2.3 which presents the actual share of
foreign inputs used in intermediate input and final good exports to the U.S. across all exercises.
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Figure 4.2: U.S. Content in Manufacturing Exports of Final Goods to the U.S.: The left panel
presents the shares for Canadian exports using the benchmark QP results. The last two
panels present the shares for Mexican exports. The middle panel uses estimates from the
QP results using common input shares for both sets of targets. The right panel lowers the
processing trade assumption to 75% of foreign inputs in exports and 25% of foreign inputs
in domestic sales.

a NAFTA car can cross country borders eight times before being delivered to final consumers.
Furthermore, the higher shares are in linewith the earlier results inKoopman et al. (2010) andDeLa
Cruz et al. (2011).31 Thus, I keep the values in Figure 4.1 asmymain results since I focus onMexico-
U.S. integration. If the focus were instead on, say, integration with Germany then processing trade
likely plays a smaller role and the German numbers associated to the exercise in the right panel of
Figure 4.2 may be more appropriate as the baseline results. Once again, the QP framework lets us
tailor the estimates to whichever assumptions we believe are most appropriate.

5 Counterfactuals: Multi-Sector, Specialized Inputs Ricardo

Having documented the degree of integrationwithin the NAFTA region I now turn to the question
of the consequences of a NAFTA repeal or increase in trade barriers. In order to do so I develop

31For example, the latter shows that in 2003 up to 96.6%of transportation equipment exports correspond to processing
trade and of this about 74% is foreign and 26% is domestic value-added. This is consistent with the shares of foreign
inputs embedded in motor vehicle exports in my benchmark results (see Appendix Section D.2.3).
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a structural model that provides a solution to the mapping in equation (14) through the lens of
a fully-fledged Ricardian specialized inputs model featuring complex spider-snake supply chains
with cross-sector and cross-stage of production input-output linkages.

Themain contribution to GVC estimation is that themodel’s GVCs can be built recursively as in
the specialized inputs measurement framework, with the specialized inputs technical coefficients
being defined structurally in terms of deep parameters and general equilibrium variables. The
model thus provides a microfounded rationale for the previous measurement framework, much
like how structural roundabout models justify the use of I-O analysis.

The main contribution to structural modeling is that I provide the first tractable multi-sector
specialized inputs model. Specifically, I extend Antràs and de Gortari (2017) to a multi-sector set-
ting that features spider-snake input sourcing patterns since firms producing at stage m require
specialized inputs from stage m + 1 and from various sectors. Hence, input sourcing decisions
branch out as more upstream stages are included.

5.1 Supply Chain Notation

Let J be the set of countries and K be the set of industrial sectors. Each country j ∈ J supplies Lj
units of effective labor at wage wj and aggregate income is wjLj. Preferences are such that each
country j spends a share αkj of its income on final consumption goods from sector k ∈ K.

I adopt a double taxonomy to refer to goods. First, inputs are specialized in that producing a
finished good requires M ∈ Z+ stages of sequential production, with M also indexing the initial
stage, so that production of the stage m = 2, . . . ,M − 1 unfinished good requires inputs from the
upstream stage m + 1. I refer to a good produced in stage m = 1 as a finished good. Second, a
finished good can be used either for final consumption or as additional intermediate inputs by firms
producing at any stage. Thus firms at stagem = M produce with labor and finished goods while
firms at stagem <M produce with labor, unfinished goods from stagem+ 1, and finished goods.
Finally, firms purchase both types of intermediate inputs from all sectors.

I now define the notation that summarizes firm sourcing decisions of unfinished good inputs;
Figure 5.1 depicts an example of overall sourcing decisions whenM = 3 and is intended to aid the
reader. Focus on a firm producing at stagem in country j. Whenm = M, no unfinished inputs are
required and thus there are no sourcing decisions to make. Whenm = M−1, firms need to decide
where to source the stageM unfinished input from and the sourcing decisions are summarized by
the following set

`j (M) ∈
{
` (M,k) ∈ J,∀k ∈ K

}
.

Location ` (M,k) is the source of the sector k input and so the set `j (M) has |K| elements. Sourcing
decisions are unrestricted so that `j (M) ∈ J|K| and in principle a stagem = M− 1 firm can source
from |J|

|K| possible combinations of countries. Each element in both of the top brackets in Figure
5.1 corresponds to some location ` (M,k) while the full brackets correspond to some set `j (M).

The sourcing decisions of firms producing further downstream atm <M−1 aremore complex

35



` (3, 1) · · · ` (3, K)| {z } ` 0 (3, 1) · · · ` 0 (3, K)| {z }
``(2,1) (3) ``(2,K) (3)

??y
??y

` (2, 1) · · · ` (2, K)| {z }
``(1) (2)

??y

` (1)

` (3, 1) · · · ` (3, K)| {z } ` 0 (3, 1) · · · ` 0 (3, K)| {z }
``(2,1) (3) ``(2,K) (3)

?y ?y
` (2, 1) · · · ` (2, K)| {z }

``(1) (2)
?y

` (1)

1

Figure 5.1: Unfinished Good Input Sourcing Decisions When M = 3.

since it is not sufficient to simply choose the locations from which to source the stagem+ 1 inputs
from. The upstream firms supplying the stage m + 1 inputs in a specific location may be able
to offer different unit prices for their output depending on where they purchase their own stage
m+2 inputs from. Hence, stagem <M−1 firms actually need to choose a whole path of upstream
sourcing decisions up to the initial stage M. The complexity of these sourcing decisions derives
from each input supplier having its own |K| upstream input suppliers and thus overall sourcing
decisions branch out as further upstream stages are incorporated.

I define the sourcing decisions of stagem <M− 1 firms in country j recursively as follows

`j (m+ 1) ∈





{
``(m+1,k) (m+ 2) , ` (m+ 1,k)

}
∈

M−m∏

µ=2
J|K|µ × J, ∀k ∈ K



 . (36)

Location ` (m+ 1,k) is where the immediate supplier of the sector k unfinished good of stagem+1
is located. In addition, ``(m+1,k) (m+ 2) fully specifies the upstream sourcing decisions of this
supplier and the upstream sourcing decisions of its own suppliers. I defined `j (m+ 1) recursively
but I will often refer to it as a set of |K|

M−m chains of the form

`
(
M,kM

)
→ · · · → `

(
m+ 2,km+2

)
→ `

(
m+ 1,km+1

)
→ j.

The superscript on km is meant only to reference the stage for which this sector is relevant. This
chain indicates that `

(
m+ 1,km+1) is the source of the sector km+1 input from stage m + 1, that

the firm producing this input sources its stagem+2 input from sector km+2 from `
(
m+ 2,km+2),

and so on. Hence, `j (m+ 1) ∈∏M−m
µ=1 J|K|µ and can take up to |J|

∑M−1
µ=1 |K|µ different combinations.

In the example of Figure 5.1, each element of the middle bracket corresponds to a supplier of the
m = M − 1 stage, ` (M− 1,k) , and each has its own associated set of input suppliers given by
``(M−1,k) (M). Likewise the full set of stage M and M − 1 suppliers in the first two levels are
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summarized in `j (M− 1) .
Finally, I define the notation for sourcing decisions of finished goods as

` ∈




{
``(1) (2) , ` (1)

}
∈

M−1∏

µ=1
J|K|µ × J



 . (37)

In contrast to `j (m+ 1) , ` characterizes a single location for the last production stage. Location
` (1) indicates the location of assemblywhile ``(1) (2) summarizes thewhole upstreampath of input
sourcing decisions. Overall sourcing strategies of finished goods can thus take up to |J|

∑M−1
µ=0 |K|µ

different combinations.32 Hence, the full path of inputs in Figure 5.1 is summarized by `with ` (1)
the assembly location and ``(1) (2) the set of all its upstream suppliers.

Having defined notation I now introduce the main technological assumption.

Assumption 5.1. Production features constant returns to scale and the market structure is perfect com-
petition. Specifically, every dollar of production of a firm producing in country j ∈ J, at some stage
m = 1, . . . ,M, in sector k ∈ K, and sourcing inputs from `j (m+ 1) can be split across its factors of
production with shares

(i) βm,k
j on labor,

(ii) ξm,k,k ′
j

(
`j (m+ 1)

)
on unfinished goods from sector k ′,

(iii) γm,k,k ′
j

(
`j (m+ 1)

)
on finished goods from sector k ′,

with
βm,k
j +

∑

k ′∈K
ξm,k,k ′
j

(
`j (m+ 1)

)
+
∑

k ′∈K
γm,k,k ′
j

(
`j (m+ 1)

)
= 1.

Part (i) of this assumption is strongest since value-added shares are country-stage-industry spe-
cific but do not depend on upstream sourcing decisions. This ensures that the model is in line with
Assumption 3.2 and that the aggregate relation in equation (10) applies (see footnote 22). The use
of intermediate inputs is more flexible since firms can substitute across unfinished and finished
goods and across sectors depending on the specific sequence of production. Note that at stage
m = M, ξM,k,k ′

j (∅) = 0 always holds. Also note that with a general constant returns to scale pro-
duction function these expenditure shares may depend on general equilibrium variables such as
wages. I omit this explicit dependence to save on notation.

Finally, I denote the distribution of country j’s consumption of sector k finished goods with
πkj (`) such that

∑
`∈J

∑M−1
µ=0 |K|µ

πkj (`) = 1. This distribution can also be interpreted as the share of
expenditure on finished goods produced through `. In order to focus on the specialized inputs
linkages I leave the specific structure of πkj (`) unspecified for the time being. The reader can think
of this distribution as a function of deep parameters and general equilibrium variables or, more

32Note how this contrasts with a single sector world, i.e. |K| = 1 so that |J|
∑M−1
µ=0 |K|µ

= |J|
M, where unfinished input

sourcing decisions occur in pure snake form: ` (M)→ · · · → ` (2)→ ` (1).
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simply, as a set of numbers determined by nature. I have so far described the input sourcing deci-
sions as if there are independent firms producing at each stage of production. I will return later to
discuss a specificmicrofoundation for πkj (`) and the required assumptions for workingwith either
a decentralized equilibrium or one in which a global firm organizes the whole supply chain.

Both the distributionπ and the expenditure shares ξ andγ are sequence-specific but have differ-
ent implications. Since firms are perfectly competitive they take general equilibrium variables such
as wages as given and thus input shares act as technological constraints imposing input expendi-
ture requirements along the production of `. Meanwhile, π determines the distribution of firms
sourcing inputs across different strategies `. These three variables jointly determine the aggregate
distribution of input expenditures at the country-industry-stage level.

5.2 M−Proportional GVCs

I now show that this model is consistent with the measurement framework of Section 3. In a nut-
shell, it takes M stages of sequential production to transform an unfinished good into a finished
good and further upstream input linkages cycle over through finished goods inputs (governed by
γ). Hence, GVCs can be constructed recursively by conditioning input expenditures on the imme-
diate M downstream locations through which these inputs flow. In what follows I further restrict
the assumptions on technology by imposing Cobb-Douglas production and by assuming that ex-
penditure shares are independent of the upstream sourcing decisions. Thus, βm,k

j , ξm,k,k ′
j , and

γm,k,k ′
j are parameters and the latter two no longer depend on `j (m+ 1). All of the results in this

section carry through to the general technology in Assumption 5.1.
Input linkages occur through unfinished and finished goods. In order to derive input shares,

remember the notation of previous sections: (i) let S = J×K×M be the set of country-industry-
stages and define an element sn ∈ S as a triple sn = {jn,kn,mn} where n is used only to indicate
the relation to a specific triple, (ii) a sequence of production of length N ∈ Z+ is given by sN →
· · · → s1. I now derive the share of inputs from s̄ =

{
j̄, k̄, m̄

}
purchased by an arbitrary sequence

of production sN → · · · → s1 that produces goods to be consumed in location j0.
I. Unfinished Goods Input Shares. These input sales occur only if the following three condi-

tions are satisfied: (i) m̄ > 1 so that sales are of unfinished goods; (ii) mN = m̄ − 1,mN−1 =

m̄ − 2, . . . ,mN−(m̄−2) = 1 so that the use of these inputs is through the appropriate sequence of
stages; and (iii) N > m̄ − 1 so that the sequence is long enough to fully specify the use of the un-
finished input through the assembly stage. When these conditions are satisfied the share of inputs
from s̄ flowing through sequence sN → · · · → s1 → j0 of length N equals

aN
(
s̄
∣∣∣sN, . . . , s1, j0

)
=

∑
`∈Lm̄,k̄(j̄|sN,...,s1 ) π

kN−(m̄−2)

jN−(m̄−1) (`)
∑

`∈⋃j̄ ′∈J Lm̄,k̄(j̄ ′|sN,...,s1 ) π
kN−(m̄−2)

jN−(m̄−1) (`)
︸ ︷︷ ︸

Probability of sourcing unfinished

good input from location j̄

× ξm
N,kN,k̄

jN

︸ ︷︷ ︸
,

Input share of sN on sector k̄

unfinished good inputs

(38)
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with

Lm̄,k̄
(
j̄
∣∣∣sN, . . . , s1

)
=

{
` ∈ J

∑M−1
µ=0 |K|µ :

`
(
m̄, k̄

)
→ `

(
mN,kN

)
→ · · · → `

(
2,kN−(m̄−3))→ ` (1)

is given by j̄→ jN → · · · → jN−(m̄−3) → jN−(m̄−2)

}
.

The input share consists of two terms. First, ξm
N,kN,k̄

jN
is the overall expenditure of sN on unfinished

inputs from sector k̄. Second, the distribution of sourcing strategies needs to be taken into account
in order to compute the share of this expenditure spent on unfinished goods froma specific location
j̄. More specifically, when m̄ <M there are multiple sourcing sequences ` that are consistent with
the production sequence in s̄ → sN → · · · → sN−(m̄−2) since further upstream sources are not
specified and the set Lm̄,k̄ (j̄

∣∣sN, . . . , s1 ) is defined such that it includes all of these chains. The
ratio of probabilities in (38) is thus the conditional probability of sourcing the k̄ sector unfinished
good from a specific j̄ given that the input will flow downstream through sN → · · · → sN−(m̄−2).

II. Finished Goods Input Shares. In contrast to the above, finished goods are sourced by all
stages of production and thus the input shares are defined whenever m̄ = 1 as

aN
(
s̄
∣∣∣sN, . . . , s1, j0

)
=

∑

`∈L(j̄)

πk̄jN (`)

︸ ︷︷ ︸
Probability of sourcing finished

good input from location j̄

× γm
N,kN,k̄

jN

︸ ︷︷ ︸

,

Input share of sN on sector k̄

finished good inputs

(39)

with
L
(
j̄
)
=
{
` ∈ J

∑M−1
µ=0 |K|µ : ` (1) = j̄

}
.

As before, the input share consists of two terms. The overall expenditure of sN on sector k̄ inputs is
similar to the previous case except that now this expenditure is on finished goods. The probability
term is simpler since assembly takes place in s̄ and thus the first term in (39) is the sum of chains
that assemble finished goods in j̄, with the set of these given by L

(
j̄
)
.

There are four observations about the input shares that are important to keep in mind. First,
whenever s̄ → sN → · · · → s1 → j0 does not satisfy the conditions of the unfinished or finished
goods input flows then aN (·) = 0. Second, it is easy (but tedious) to see that the input shares are
defined appropriately in the sense that the value of production of sN to be used through sequence
sN−1 → · · · → s1 → j0 is fully accounted for by the expenditure on its factors of production. That
is, the following always holds

βm
N,kN

jN
+
∑

s̄∈S
aN
(
s̄
∣∣∣sN, . . . , s1, j0

)
= 1.

Third, note that specifying the sequence through which sN production is used is only relevant
for the linkages through unfinished goods. That is, while the input shares of unfinished goods
(38) may depend on the sequence sN−1 → · · · → s1 → j0 those of finished goods (39) do not.
This distinction is at the heart of this paper because it is precisely this type of specialized inputs
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linkages, in which firms make their input sourcing decisions conditional on where they sell their
own output to, that makes these models inconsistent with roundabout production. Fourth, it will
never be necessary to condition input shares on a sequence of more than M stages. That is, there
will never be any need to compute the input shares in (38) for N > M since sourcing strategies
in ` are defined only up to M stages of production and further input linkages only occur through
finished goods. Furthermore, when N = M there is no need to specify the final location j0 since
sequential inputs flow at the most upstream between an input producer in m̄ = M and the location
of purchase of the finished good being produced will at most be at the downstream stage s1. The
implication is that when N = M , input shares can be conditioned as aM

(
s̄
∣∣sM, . . . , s1 ).

The terms aN (·) fully characterize GVC flows GN
(
sN, . . . , s1, j

)
for any N ∈ Z+. To see this,

begin by computing final consumption flows and remember that αkjwjLj is country j’s aggregate
consumption of sector k goods. Purchases from s1 ∈ S occur only ifm1 = 1 and are given by

G1
(
s1, j

)
=



∑

`∈L(j1)

πk
1
j (`)


× αk1

j wjLj. (40)

The share of final good flows purchased from the location in s1 is equal to the total probability of
sourcing shares ` that assemble the finished good of sector k1 in location j1. Longer GVC flows can
be computed recursively for N = 1, . . . ,M− 1 as

GN+1
(
sN+1, . . . , s1, j

)
= aN

(
sN+1

∣∣∣sN, . . . , s1, j
)
GN
(
sN, . . . , s1, j

)
.

Proposition 5.2. GVCs in the specialized inputs model can be constructed for any N > M as

GN+1
(
sN+1, sN, . . . , s1, j

)
= aM

(
sN+1

∣∣∣sN, . . . , sN+(M−1)
)
GN
(
sN, . . . , s1, j

)
(41)

Hence, this structural model provides an answer to the fundamental problem of GVC estima-
tion in that it delivers a precise way for solving the mapping in equation (14). Furthermore, the
model delivers the same answer as the specialized inputs measurement framework as defined in
(18) and thus provides a microfounded justification for its use. The specialized inputs measure-
ment framework assimilates the fact that the GVCs of this class of models depends on a set of
primitives which may be microfounded in diverse ways but equal the same set of numerical val-
ues in equilibrium across models.

5.2.1 General Equilibrium

Computing the equilibrium wages is immediate now that the model has been mapped into its
GVCs since these can be used to trace value across all stages of production. Specifically, an impli-
cation of Proposition 5.2 is that that the decomposition of value-added in final good consumption
can be done with the formula in equation (26). Since labor is the only factor of production, wages
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are pinned down in general equilibrium by equating labor income to value-added

wjLj =
∑

t∈j×K×M

∑

s∈J×K×M
VAt (s, j) .

The term on the right depends on wages through final good consumption and through the vari-
ables defining the input shares aM (·), so that this equation presents an useful fixed point.33

This ends the description of the model which holds regardless of how πkj (`) is determined.
Though there are potentially many different stories behindwhat determines this distribution, with
constant returns to scale as in Assumption 5.1 the mapping in (14) can be resolved with (41).

5.3 Welfare Analysis: A Ricardian Microfoundation

The specialized inputs measurement framework requires no microfoundation since the primitives
take the same equilibrium values across models. Computing counterfactuals is a very different
matter since a theory for constructing unobserved, in the sense that they do not exist, equilibria is
required. In order to do so, I now impose additional structure and parametric characterization of
πkj (`). I discuss this microfoundation in terms of there being a lead firm that decides the overall
sourcing strategy `, but this can can be decentralized into a world where there are independent
firms producing at each stage of production using the tools of Antràs and de Gortari (2017).

Assume that each sector produces a continuum of measure one of differentiated varieties in-
dexed by ω. As before, each variety requires M ∈ Z+ stages of sequential production. An mth
stage variety ω requires variety-specific inputs from stage m + 1. That is, the unfinished inputs
needed for producing the mth stage variety ω of sector k are stage m + 1 varieties ω from every
sector t. Finished varieties of stage m = 1 are consumed by final consumers and also used by
firms as intermediate inputs through constant-elasticity-of-substitution composite bundles of the
continuum of varieties of each sector. Specifically, let σkj > 1 be the elasticity-of-substitution and
Pkj the unit price of one unit of the sector k composite bundle in country j. Finally, all international
trade flows are subject to iceberg trade costs with τkji indicating howmany units from sector k need
to be sent from j for one unit to arrive in i. The following restrictions apply: τkji = τkij, τkjj = 1, and
τkji 6 τ

k
jlτ
k
li for all i, j, l ∈ J and for all sectors k ∈ K.

The environment is perfect competition and since technology is Cobb-Douglas I work directly
with prices (the dual). Throughout it will be useful to write the following auxiliary variable related
to the unit cost of labor and composite inputs

cm,k
j =

(
wj
)βm,k

j
∏

k ′∈K

(
Ptj
)γm,k,k ′

j .

The stagem = M varietyω of sector k requires no unfinished good inputs so that the cost of labor
and composite inputs in each location j fully characterize its price up to a Ricardian productivity

33Trade imbalances can easily be incorporated as in Dekle et al. (2007) by including an exogenous trade deficitDj < 0
in overall final demand in equation (40) as wjLj −Dj.
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shifter zM,k
j (ω). That is

pM,k
j (ω) = zM,k

j (ω) cM,k
j . (42)

Computing the prices of stagem <M varieties is slightly more complicated since they depend
on the whole upstream sequence through which the unfinished inputs are sourced from. The
Cobb-Douglas assumption implies that these can be computed recursively as

pm,k
j

(
ω
∣∣`j (m+ 1)

)
= zm,k

j (ω) cm,k
j

∏

k ′∈K

(
pm+1,k ′
`(m+1,k ′)

(
ω
∣∣``(m+1,k ′) (m+ 2)

)
τk
′
`(m+1,k ′)j

)ξm,k,k ′
j .

(43)
The price depends on a variety-specific Ricardian productivity shifter zm,k

j (ω), the local price of
labor and composites through cm,k

j , and also on the set of prices that its direct input suppliers
of stage m + 1 from each sector k ′ located at ` (m+ 1,k ′) command when they source their own
inputs through the chains specified by ``(m+1,k ′) (m+ 2). Note that geography plays a role since
input prices are shifted upwards by the trade cost τk ′`(m+1,k ′)j.

AfterM stages of sequential production each variety becomes a finished good and can be pur-
chased in location j at a price that varies depending on the sequence of locations ` through which
the upstream variety-specific inputs were sourced from. Specifically, the price of a sector k variety
ω produced through ` (with ` (1) the finished good assembly stage) in country j equals

pF,k
j (ω |`) = p1,k

`(1)
(
ω
∣∣``(1) (2)

)
τk`(1)j, (44)

=
∏

`

M∏

m=2

[
zm,km
`(m,km)

(ω) cm,km
`(m,km)τ

km

`(m,km)`(m−1,km−1)

]m−1∏
µ=1
ξ
µ,kµ ,kµ+1
`(µ,kµ)

× z1,k
`(1) (ω) c1,k

`(1)τ
k
`(1)j.

Notation is such that the product over `denotes themultiplication of the term in square parenthesis
for each of the

∑M−1
m=1 |K|

m elements of the |K|
M−1 chains in ` that fully describe the input sourcing

decisions used to produced a finished variety.34

The key challenge for deriving the distribution πkj (`) is that that the literature normally as-
sumes that 1/zm,km

`(m,km)
(ω) is distributed as a Fréchet random variable. This poses a challenge

because if there exist individual firms producing at each stage of production and purchasing in-
puts from the cheapest upstream suppliers then this problem becomes intractable since the overall
distribution of sourcing decisions is given by the product of Fréchet random variables, as in equa-
tion (44), which has no closed form probability distribution. Alternatively, as initially shown in
Antràs and de Gortari (2017), this obstacle can be surmounted by assuming that there is a lead firm
which organizes the overall supply chain and faces a random productivity shock that is specific
to the overall input sourcing decision `. Assume that the productivity distribution of lead firms

34For example, following the case of M = 3 in Figure 5.1, this product includes a term for each of the stage m = 2
suppliers ` (2, 1) , . . . , ` (2,K); and a term for each of the stagem = 3 suppliers ` (3, 1) , . . . , ` (3,K) from which each stage
m = 2 supplier ` (2,k) sources its inputs from. Thus, there are |K|

3−1
= |K|

2 chains leading to assembly in ` (1) from
some firm atm = M = 3 and |K| 1 + |K|

2 elements in the product.
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selling to market j and producing through ` is given by

1
/∏

`

M∏

m=2

[
zm,km
`(m,km)

(ω)
]m−1∏
µ=1
ξ
µ,kµ ,kµ+1
`(µ,kµ) × zm,k

`(1) (ω) ∼ Fréchet
(
Tkj (`) , θ

)
. (45)

That is, the random variable is given by the product of productivities across all input sourcing
chains in ` weighted by the input expenditure share relative to the final output value on each

upstream input as denoted by the exponent
m−1∏
µ=1

ξ
µ,kµ,kµ+1

`(µ,kµ) .

The lead firm assumption in (45) renders the problem tractable since final good prices follow an
extreme value distribution and the optimal sourcing strategies for each variety can thus be easily
characterized using the standard techniques introduced in Eaton and Kortum (2002). In the most
general case, lead firms face different overall productivities depending on themarket at which they
sell their finished good in (and determined by the scale parameter Tkj (`)).35

There are various reasons why compatibility may drive variation in this parameter across con-
sumer markets. For example, physical compatibility may require that machines have similar volt-
ages while regulatory compatibility may arise because emission or quality standards vary across
countries. Furthermore, this parameter can also be used to capture multinational activity by prox-
ying the offshoring practices of global firms. Finally, a very similar model can be written in which
trade costs are sequence-specific, i.e. τkij (`) and can reflect trade barriers that are related to content
such as rules of origin. For example, under NAFTA rules Mexico can export a car to the U.S. at a
lower tariff whenever its upstream inputs were purchased from the U.S. itself.

The share of varieties that country j sources through a particular sequence equals

πkj (`) = Pr


` = arg min

` ′∈J
∑M−1
µ=0 |K|µ

pF,k
j

(
ω
∣∣` ′
)

 , (46)

=
1
Θkj
Tkj (`)

∏

`

M∏

m=2

(
cm,km
`(m,km)τ

km

`(m,km)`(m−1,km−1)

)−θ
m−1∏
µ=1
ξ
µ,kµ ,kµ+1
`(µ,kµ)

×
(
c1,k
`(1)τ

k
`(1)j

)−θ
.

with the proportionality constant Θkj being the sum of the numerator across all possible input
sourcing strategies ` ∈ J

∑M−1
µ=0 |K|µ . Finally, composite prices are given by

Pkj =
[
Θkj
]− 1

θ Γ

(
1 +

1 − σkj
θ

) 1
1−σk

j

. (47)

Akeyproperty in equation (46) is that the trade elasticity of shipping goods through ` (m,km)→
`
(
m− 1,km−1) and to be used subsequently through `

(
m− 2,km−2) → · · · → `

(
2,k2) → ` (1)

35For simplicity, I assume that a finished variety produced through ` and sold in j has to be used there as an inter-
mediate input or final consumption and cannot be re-exported to a different market.

43



is given by −θξ1,k,k2

`(1)

m−1∏
µ=2

ξ
µ,kµ,kµ+1

`(µ,kµ) and thus increases as goods move downstream. This result

echoes that found early on in Yi (2010) and more recently in Antràs and de Gortari (2017). Trade
costs are proportional to gross output and as unfinished varieties flowdown the supply chainmore
and more value is added so that cost of shipping becomes more and more important. However, a
crucial difference with the previous literature is that the supply chain linkages do not occur solely
in pure snake form. That is, the trade elasticity is always greater at more downstream stages within
a specific chain `

(
M,kM

)
→ . . .→ `

(
2,k2)→ ` (1) but it is entirely possible that the trade elasticity

of upstream production stages in another chain, even within the same `, is higher than the down-
stream trade elasticities of the former. The reason for this is that the trade elasticities are attenuated
by input expenditure shares so that chains that deliver very few inputs to assembly will have low
trade elasticities in downstream stages while chains that deliver a lot of inputs to assembly may
have high trade elasticities even in upstream stages of production.

5.3.1 Gains from Trade

Implementing counterfactuals with specialized inputs models is a daunting task given the number
and complexity of the parameters on which they depend. In particular, the compatibility parame-
ters Tkj (`) determine the average productivity across sequences of production and thus constitute
a major force in shaping supply chain patterns. This implies that they can only be calibrated with
supply chain data, or at the very least with more disaggregate moments than those contained in
bilateral trade flows, and are thus impossible to parameterize given current data limitations. A
similar critique applies to the intermediate input expenditure shares since bilateral flows do not
provide information on how to disentangle expenditures across composites γ and variety-specific
ξ inputs. Hence the direct use of this model appears to be limited.

Fortunately, as noted by Antràs and de Gortari (2017), the broad insight from Arkolakis et al.
(2012) carries through to this class of Ricardian supply chain models and the welfare gains from
trade can be stated in terms of a few sufficient statistics and key elasticities. The change in real
income in country j equals

Ŵj =
∏

k1∈K




[
π̂k

1
j

(
`∗j
)]

− 1

θ
∑

kM ,...,k2

M∑
m=1

β
m,km
j

m−1∏
µ=1

ξ
µ,kµ ,kµ+1
j ∏

t∈K

[
P̂tj

P̂k
1
j

]−
∑

kM ,...,k2

M∑
m=1

γ
m,km ,t
j

m−1∏
µ=1

ξ
µ,kµ ,kµ+1
j

∑

kM ,...,k2

M∑
m=1

β
m,km
j

m−1∏
µ=1

ξ
µ,kµ ,kµ+1
j




αk
1
j

,

(48)
where `∗j is the strategy that sources every single input domestically. In terms of sufficient statistics
it depends on the expenditure change on purely domestic sourcing chains π̂k1

j

(
`∗j
)
and changes in

relative prices while the key elasticity is given by the Fréchet parameter attenuated by the sum of
the value-added shares relative to the assembly stage across all upstream stages of production.
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In order to better understand how multi-sector production and specialized inputs linkages in-
teract to shape this equation, I first discuss its relation to three special cases found in earlier work.

I. Eaton and Kortum (2002) developed the first tractable multi-country Ricardian model with a
single sector and no specialized inputs linkages: |K| = 1 andM = 1. The welfare gains depend on
the expenditure share on domestic goods, the trade elasticity, and the value-added share

Ŵj =
[
π̂jj
]− 1

θβj .

In the absence of intermediate inputs, βj = 1, goods cross borders a single time so that the gains
equal the change in domestic expenditures and amplified by the degree of comparative advantage
1/θ . For a given change in domestic expenditure, stronger comparative advantage implies that
a country benefits more from sourcing foreign goods. However, when intermediates are present,
βj < 1, aggregate purchases equal a share 1+

(
1 − βj

)
/βj = 1/βj of income and the amplification

is greater since changes in trade costs have ripple effects across all stages of production.
II. Caliendo and Parro (2015) generalized the model to multiple sectors and included input-

output linkages, defined as the linkages through finished (composite) goods in this paper, but no
specialized inputs: |K| > 1 and M = 1. The welfare gains from trade now also depend on the
sectorial input expenditure shares, the consumer’s sectorial final good expenditure shares, and the
changes in relative prices

Ŵj =
∏

k∈K



[
π̂kjj
]− 1

θβk
j

∏

k ′∈K

[
P̂k
′
j

P̂kj

]−γ
k,k ′
j

βk
j




αkj

.

The new terms reflect the input-output linkages throughwhich increases (decreases) in sector-level
prices of composite inputs relative to output decrease (increase) labor productivity. This translates
directly into welfare up to the weight γk,k ′

j /βkj , which proxies the importance of the sector k ′ in-
termediates relative to value-added in sector k.

III.Antràs and de Gortari (2017) incorporated specialized inputs into a one-sector model: |K| =

1 and M > 1. Specialized input linkages occur as pure snakes in the sense that a chain ` (M) →
· · · → ` (1) fully characterizes input sourcing decisions since each production stage sources a single
upstream input and these chains do not ‘branch-out’ as in the multi-sector case. The gains equal

Ŵj =
[
π̂j
(
`∗j
)]

− 1

θ
M∑
m=1

βm
j

m−1∏
µ=1

ξ
µ
j .

The sufficient statistic is given by the expenditure on goods produced through purely domestic
chains, `∗j = {j→ · · · → j}, and the amplification is given by the weighted trade elasticity across all
stages of productionβ1

j+β
2
jξ

1
j+β

3
jξ

2
jξ

1
j+. . . . The latter proxies the fact that trade costs are leveraged

over gross output and this increases as specialized inputs flow down the chain of production. In
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principle, the overall amplification effect might not be higher than in the Eaton and Kortum (2002)
since θ means different things across models and while empirical estimates of the trade elasticity
map directly into θ in a structural gravity world this is not so in a world with specialized inputs.

The key reason why bilateral trade data is not sufficient for characterizing welfare in special-
ized inputs models is that changes in geography have asymmetric effects over intermediate input
purchases. That is, structural gravity implies that when Mexico sells one more car to the U.S. this
has the exact same effects on its purchases of car parts than when it sells one more car to Germany.
In a world of specialized inputs this is not so since Mexico uses different inputs to produce cars
sold to different markets. More formally, this can be stated as third country trade costs having an
asymmetric effect on the elasticity of relative imports from two sources. That is, the macro-level
restriction that Arkolakis et al. (2012) call “the import demand system is CES” fails (see Appendix
Section B.4 for a formal proof).

The general formula presented in equation (48) contains elements from all three papers. First,
the gains depend on a domestic share variable and the trade elasticity as in Eaton and Kortum
(2002). Second, the gains also depend on the shifts in relative prices as in Caliendo and Parro
(2015). Third, the trade elasticity is amplified through intermediate input linkages as in Eaton and
Kortum (2002) but this amplification also depends on the specialized inputs channel as in Antràs
and de Gortari (2017). However, now the amplification is even richer since specialized inputs occur
as spiders and is given by the sum of value-added shares across the total |K|

M−1 domestic chains
in `∗j as noted by the summation

∑
kM,...,k2∈KM−1 .

Current data limitations preclude the use of the sufficient statistics approach for the time be-
ing. While knowing the deep parameters governing compatibility Tkj (`) are no longer needed, the
(currently unavailable) equilibrium supply chain flows are required in order to compute domestic
expenditure shares. This is further compounded by the fact that the specialized input expendi-
ture elasticities ξk,k ′

j are also unknown and that shifts in relative prices are hard to obtain in both
general counterfactual exercises and real world trade liberalizations.

6 Conclusions

I have developed a broad GVC framework consistent with the specialized inputs linkages that
permeate today’s global trade arena. The small picture takeaway is that this channel yields a much
more integrated view of Mexico-U.S. trade and this confirms the worries arising from a potential
increase in trade barriers following the current renegotiation of NAFTA.

The big picture take is that additional sources of information can be used in a piecemeal basis
to obtain more accurate GVC estimates. I have focused on the GVCs that cross throughMexico and
studied statistics heavily influenced by these variables given my access to the Mexican firm-level
data. Other researchers can readily incorporate their own data into this estimation framework in
order to study whichever questions are pertinent. Moreover, multiple sources of data, say U.S. and
Chinese customs data, can be jointly incorporated to study relevant statistics such as U.S.-China
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value-added trade imbalances. I have posted the quadratic programming code permanently in
code.estimategvcs.com so that anyone can immediately use it.

Ultimately, measuring regional integration properly matters since deep integration is associ-
ated with potentially more costly supply chain disruption. In the last section, I provided a model
that satisfies themaximof developing theory in order to guide the recollection of data since, though
of limited current use, it provides statistical offices with a map of which data to collect and re-
port. In particular, it calls for obtaining better domestic transaction data and reporting measures
of cross-industry domestic supply chain expenditures. While countries with value-added taxes
often collect this data, it is much less prevalent in those without such as the U.S.

Themost pressing need facing the theoretical GVC field involves addressing amajor issue that I
have disregarded entirely: Fixed costs of production. There is ample anecdotal evidence suggesting
that this is a key concern regarding supply chain disruption since it is very costly, in terms of
both time andmoney, for manufacturers to transfer production facilities across borders when trade
breaks down. I have ignored this margin not out of choice but out of necessity since combining
specialized inputs linkages with fixed costs is extremely challenging given that one quickly runs
into multiple equilibria. Specifically, fixed costs imply that upstreammarginal costs depend on the
downstream use of output and so general equilibrium cannot be computed through a recursive
characterization of firm supply chain decisions. Developing a specialized inputs model that nests
Melitz (2003) as a knife-edge case would be a great step towards better understanding the welfare
losses from supply chain disruption.
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A Graphical Intuition

Concretely, the paper’s message is simple and the intuition can be conveyed through the graphical repre-
sentation in Figure A.1. Let G summarize all GVC flows leading to final consumption. In other words, let
G proxy a specific GVC data generating process that is consistent with some aggregate WIOT data. The
large cloud in Figure A.1a represents the highly-dimensional space of all data generating processes that are
consistent with some aggregate WIOT data, with the yellow star representing the true (unobserved) one.

Figure A.1b shows that the I-O analysis GVCs are mismeasured and let the distance between two dots

General	space	of	
GVCs:	𝓖

𝓖∗			True	GVCs
→ unobserved

(a) GVCs live in a high dimensional space of which
the true GVCs are a single point.

I-O	analysis	GVCs

𝓖∗

𝓖%&'

(b) The roundabout or I-O analysis GVCs are only
one of many possible data generating processes.
The distance between two points proxies how sim-
ilar they are.

𝓖∗ Feasible	
set	grows	

𝓖%&'

(c) Relaxing the proportionality assumptions as in
the specialized inputsmeasurement framework in-
creases the size of the set of GVCs that can be esti-
mated. The QP framework can back out any flows
consistent with a given degree of proportionality.

𝓖∗
Many	GVCs
dominate							
I-O	analysis

𝓖%&'

(d) Even if we cannot work with the correct degree
of proportionality, there exist a whole set of solu-
tions to the QP framework that dominate the I-O
analysis GVCs.

Figure A.1: The Specialized Inputs Measurement Framework and QP Intuition.
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proxy how close they are (for example, as given by the Euclidean distance). The set of GVCs consistent with
WIOT data that can be measured expands as the I-O analysis input shares in Assumption 3.3 are relaxed to
hold only across longer sequences of production as with specialized inputs in Assumption 3.6. This can be
seen in Figure A.1c with the larger circles representing the set of GVCs consistent with weaker assumptions
(i.e. largerM). Relaxing the proportionality assumption is desirable since the QP framework can potentially
back out the correct ones once the the assumptions are weak enough and the true GVCs fall in this set.

More generally, it may occur that the true GVCs do not satisfy any notion of fixed input shares or satisfy
one that is beyond our computing power. In such a case, Figure A.1d shows that the QP framework can
still improve upon I-O analysis as the GVC estimates in the shaded region, though still imperfect, are more
accurate. The key identification assumption can be described as shifting the GVC estimates into the shaded
region. A researcher can use additional data or her own priors over the data generating process to discipline
the GVC estimates as she considers reasonably. If done correctly, this improves the GVC estimates relative
to I-O analysis.

B Mathematical Derivations

B.1 Linear Algebra for the QP Framework

All of the vectors throughout the paper are stacked in the samewaywith the sorting done first along the first
dimension, then along the second, so on and so forth. Formally, let v

(
sM, . . . , s1, s0) be a variable of M + 1

dimensions where each has the range of elements in S and to make notation cleaner assume that the set
notation also denote the number of elements contained therein. Hence, S is the set of all country-industry
pairs and index a pair s ∈ S consisting of an industry k ∈ K in country j ∈ J as s = (j− 1)K+k so that these
can be referred to with s = 1, . . . , S. I define the stacking recursively. Define v0 (sM, . . . , s0) = v

(
sM, . . . , s0)

as the initial vector of size 1× 1. Each of the M+ 1 dimensions are stacked up as

vm(sM, . . . , sm)
Sm×1

=




vm−1(sM, . . . , sm, 1)
...

vm−1(sM, . . . , sm, S)


 ,

withm = 1, . . . ,M. Finally, vM+1 is the stacked vector of size SM+1 × 1 of vectors vM (s).
I now define the matrices for the QP framework (33) for an arbitraryM ∈ Z+. Stack up cX, qX, andX as

before so that they are vectors of size SM+1 × 1 and stack up cG, qG and G analogously but with the initial
stacking across J destinations only so that these are vectors of size SMJ × 1. The WIOT data is stacked up
similarly but only up to n = 1 so that X is a S2×1 vector and F is a SJ× 1 vector. Finally, let β̃ =

[
1

1−β(s)

]
be
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an auxiliary vector of size 1× S. Define the auxiliary matrices

BX
S2×SM+1

=
[(

11×S ⊗ β̃⊗(M−2)
)
⊗ diag

{
β̃⊗ 11×S

}]
,

BF
SJ×SMJ

=
[(

11×S ⊗ β̃⊗(M−2)
)
⊗ diag

{
β̃⊗ 11×J

}]
,

DβX
SM×SM+1

=
[
11×S ⊗ diag

{
β̃⊗ 11×SM−1

}]
,

DX
SM×SM+1

= [ISM×SM ⊗ 11×S] ,

DG

SM×SMJ

= [ISM×SM ⊗ 11×J] ,

Q
SM(S+J)×SM(S+J)

= diag
{
qX,qG

}
.

with ⊗ the Kronecker product, and where β̃⊗(M−2) is the (M− 2)−fold Kronecker product of β̃with itself
and of size 1× SM−2. The QP framework is

min
[

X− cX

G− cG

]T
Q

[
X− cX

G− cG

]

s.t.




BX 0S2×SMJ

0SJ×SM+1 BF

DβX −DX −DG



[

X

G

]
=




X

F

0SM×1




ISM(S+J)×SM(S+J)

[
X

G

]
> 0SM(S+J)×1

The first two sets of linear constraints represent the bilateral data constraints (29) and (30) while the last set
of linear constraints represent the consistency constraint (31).

B.2 Proof of Lemma 3.7

Proof. From the definition of XM (·) in (19) and the specialized inputs assumption (18)

XM
(
t, sM, . . . , s1) ,

=

∞∑

N=M+1

∑

lN−M−1∈S
· · ·
∑

l1∈S

∑

j∈J
GN
(
t, sM, . . . , s1, lN−M−1, . . . , l1, j

)
,

=

∞∑

N=M+1

∑

lN−M−1∈S
· · ·
∑

l1∈S

∑

j∈J
aM

(
t
∣∣sM, . . . , s1 )GN−1 (sM, . . . , s1, lN−M−1, . . . , l1, j

)
,

= aM
(
t
∣∣sM, . . . , s1 )


∑

l∈S

∞∑

N=M+1

∑

lN−M−1∈S
· · ·
∑

l1∈S

∑

j∈J
GN
(
sM, . . . , s1, l, lN−M−1, . . . , l1, j

)
+
∑

j∈J
GM

(
sM, . . . , s1, j

)

 ,

= aM
(
t
∣∣sM, . . . , s1 )


∑

l∈S
XM

(
sM, . . . , s1, l

)
+
∑

j∈J
GM

(
sM, . . . , s1, j

)

 .
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B.3 Corollary 3.8

Proof. From equation (10) we have

GN
(
sM, . . . , s1, l, lN−M−1, . . . , l1, j

)
=

1
(1 − β (sM))

∑

t′∈S
GN+1 (t ′, sM, . . . , s1, l, lN−M−1, . . . , l1, j

)

and
GM

(
sM, . . . , s1, j

)
=

1
(1 − β (sM))

∑

t′∈S
GM+1 (t ′, sM, . . . , s1, j

)
.

Substituting these terms into the fourth line of the previous proof we obtain that

XM
(
t, sM, . . . , s1) = aM

(
t
∣∣sM, . . . , s1 )

(1 − β (sM))

∑

t′∈S




∞∑

N=M+1

∑

lN−M−1∈S
· · ·
∑

l1∈S

∑

j∈J
GN
(
t ′, sM, . . . , s1, lN−M−1, . . . , l1, j

)

 ,

=
aM

(
t
∣∣sM, . . . , s1 )

(1 − β (sM))

∑

t′∈S
XM

(
t ′, sM, . . . , s1) .

B.4 Import Demand Systems in a Specialized Inputs World Are Not CES

I illustrate how the presence of specialized inputs breaks the key macro-level restriction in Arkolakis et al.
(2012) that relative imports be unaffected, in partial equilibrium, by changes in trade costs with third coun-
tries. Tomake this as simple as possible I assume a one-sector model with a single link of specialized inputs,
i.e. |K| = 1 and M = 2. I prove this result in two alternative scenarios, one in which bilateral trade data is
disaggregated across two artificial industries (one for each stage) and another in which bilateral trade data
includes a single industry per country. I make two additional assumptions in order to focus on a special
case, which is easy to study analytically, but all the results carry through more generally. Specifically, I as-
sume that (i) the compatibility parameters are separable across stages of production, weighted by the share
of stage output relative to the finished good output, and independent of the consumption location and given
by Tj (`) =

(
T`(2)

)ξ`(1) T`(1); (ii) the value-added relative to composite expenditure is constant across both
stages of production so that γ1

j/β
1
j = γ

2
j/β

2
j and β1

j + γ
1
j + ξj = β

2
j + γ

2
j = 1.

B.4.1 Scenario 1: WIOT Data with Two Artificial Industries

Suppose that the above specialized inputs model is the true data generating process and the WIOT data is
observable at the level of J countries andK = {1, 2} artificial industries where 1 is the downstream stage and
2 is the upstream stage. To make notation slightly more compact, denote the distribution of supply chains
as

π`(2)`(1),j =
1
Θj

(
T`(2)c

2
`(2)τ`(2)`(1)

)−ξ`(1)θ ×
(
T`(1)c

1
`(1)τ`(1)j

)−θ
.

The WIOT is built as follows. Final good flows are given by

F ({j ′, 1} , j) =
∑

l∈J
πlj′,jwjLj,

F ({j ′, 2} , j) = 0.
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Intermediate input trade flows are given by

X ({j ′, 1} , {j, 1}) =
∑

l′′∈J
πl′′j′,j

∑

l′∈J

∑

l∈J
γ1
jπl′j,l

(
1 +

γ1
l

β1
l

)
wlLl,

X ({j ′, 1} , {j, 2}) =
∑

l′′∈J
πl′′j′,jγ

2
j

∑

l′∈J

∑

l∈J
ξl′πjl′,l

(
1 +

γ1
l

β1
l

)
wlLl,

X ({j ′, 2} , {j, 1}) =
∑

l∈J
ξjπj′j,l

(
1 +

γ1
l

β1
l

)
wlLl,

X ({j ′, 2} , {j, 2}) = 0.

Focus first on imports from the downstream sector 1. The partial elasticity in country j of imports from
j ′ 6= j relative to domestic expenditure with respect to a change in trade costs with an arbitrary country
i ′ 6= j equals

∂ ln
(
F ({j ′, 1} , j) /F ({j, 1} , j)

)

∂ ln (τi′j)
=
∂ ln

(
X ({j ′, 1} , {j, 1}) /X ({j, 1} , {j, 1})

)

∂ ln (τi′j)
=
∂ ln

(
X ({j ′, 1} , {j, 2}) /X ({j, 1} , {j, 2})

)

∂ ln (τi′j)
,

= −θ

[
1[j′=i′]

(
1 + ξj′

πjj′,j∑
l∈J πlj′,j

)
− ξj

πi′j,j∑
l∈J πlj,j

]
. (49)

These elasticities are the same regardless ofwhether the imports are used for consumption or as intermediate
inputs in any of the two sectors. In contrast, the partial elasticity for imports from the upstream sector equal

∂ ln
(
X ({j ′, 2} , {j, 1}) /X ({j, 2} , {j, 1})

)

∂ ln (τi′j)
= −1[j′=i′]ξjθ. (50)

Hence, themacro-level restriction only holds for imports of the upstream input but not for imports of the
downstream input. The reason is that the finished variety prices that country j pays depends on the trade
costs throughout the whole sequence through which each variety was produced. That is, the intuition for
equation (49) is that when τi′j increases (decreases) the downstream firms producing at j shift away from
(towards) upstream suppliers from i ′ and the magnitude depends on the importance of the upstream sector
as given by the expenditure shares on upstream inputs ξj and on i ′ as an upstream supplier as measured
by πi′j,j/

∑
l∈J πlj,j. In contrast, when τi′j changes this has no effect on the upstream suppliers from which

j ′ sources its inputs unless j ′ = i ′ in which case an analogous effect holds. Overall, both effects partially
(but not fully) offset each other. On the other hand, the intuition for equation (50) is that changes in third
country trade costs have no effect on relative upstream good imports since the upstream producers only use
composite inputs, and the intuition is exactly as would happen in an Eaton and Kortum (2002) model.

Now suppose that this model is the correct data generating process, but we only observe the bilateral
trade flows and erroneously apply a two-sector roundabout model such as Caliendo and Parro (2015). Then,
we would calibrate the model so that consumers only buy the sector 1 good and so that production at 1 uses
inputs from 1 and 2 but production at 2 only uses inputs from 1. Our roundabout model would then predict
that the import demand system is CES so that the standard gains from trade formulas apply, but this occurs
only because the model is misspecified and in reality changes in trade costs have very different effects. It is
only when the roundabout model is correctly specified, i.e. ξj = 0 for all j ∈ J so that the upstream stage is
effectively shut down, that the import demand system in the specialized inputs model is CES.
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B.4.2 Scenario 2: WIOT with a Single Industry

Suppose that the above specialized inputs model is the correct data generating process, however we only
observe aggregate bilateral flows for each country. The WIOT is built as follows. Final good flows are given
by

F (j ′, j) =
∑

l∈J
πlj′,jwjLj.

Intermediate input trade flows are given by

X (j ′, j) =
∑

l∈J
πlj′,j

γ1
j

β1
j

wjLj +
∑

l∈J
ξjπj′j,l

(
1 +

γ1
l

β1
l

)
wlLl.

Denote the share of final good expenditures by πFj′j =
∑
l∈J πlj′,j. The partial elasticities in country j

of imports from j ′ 6= j relative to domestic expenditures with respect to a change in trade costs with an
arbitrary country i ′ 6= j equal

∂ ln
(
F (j ′, j) /F (j, j)

)

∂ ln (τi′j)
= −θ

[
1[j′=i′]

(
1 + ξj′

πjj′,j∑
l∈J πlj′,j

)
− ξj

πi′j,j∑
l∈J πlj,j

]
,

∂ ln
(
X (j ′, j) /X (j, j)

)

∂ ln (τi′j)
= −θ1[j′=i′]

[
ξj +

(
(1 − ξj)

πFj′j

X (j ′, j) + ξj
′
πjj′,j

X (j ′, j)

)
γ1
j

β1
j

wjLj

]

− θ

[(
πFjj

X (j, j) −
πFj′j

X (j ′, j)

)
(
πFi′j + ξi′πji′,j + ξjπi′j,j

)
− ξj

πi′j,j

X (j, j)

]
γ1
j

β1
j

wjLj

− θξj
∑

l∈J

[(
πjj,l

X (j, j) −
πj′j,l

X (j ′, j)

)(
1[l=i′]

(
πFji′ − 1

)
+ 1[l=j]πFi′j − ξi′πji′,l − ξjπi′j,l

)](1 − ξl
β1
l

)
wlLl.

As in scenario 1, the import demand system is not CES. The intuition is very simple, trade costs between third
countriesmatter in aworld of specialized inputs because these linkagesmove input demand asymmetrically
and a fall in trade barriers will increase relative imports from those locations and those countries that are
situated along the supply chains through which trade costs fell. It is only in the knife-edge case in which
the specialized inputs channel is absent, i.e. ξj = 0 for all j ∈ J, that the import demand system is CES since
changes in trade costs shift input demand symmetrically

C Industry Aggregation Bias

I review in both theory and practice the classic critique to I-O analysis of not taking into account the potential
heterogeneity in input shares across industrial sectors.

C.1 Industry Aggregation Bias in Theory

For simplicity, assume that there is a single country and thatK is the set of sectors of production. Let X (t,k)
be aggregate intermediate input sales from sector t to sector k and let Y (k) be total sales of sector k. Finally,
assume that each sector in K produces a single homogenous good and that I-O analysis holds in the sense
that every dollar of production in k ∈ K uses the same amount of inputs from every other t ∈ K. The
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technical coefficients determining the I-O analysis input shares are

a (t |k ) ≡ X (t,k)
Y (k)

.

Suppose that our statistical office only reports data at the level of KAGG sectors. In particular, assume
that for each k ′ ∈ KAGG the set κ (k ′) ⊂ K represents the sectors that are aggregated into k ′ (i.e. κ (·) is a
partition of K). The technical coefficients associated with t ′,k ′ ∈ KAGG are then

aAGG (t ′ |k ′ ) ≡ X
AGG (t ′,k ′)
YAGG (k ′)

=

∑
t∈κ(t′)

∑
k∈κ(k′) X (t,k)

∑
k∈κ(k′) Y (k)

.

The industry aggregation bias arises from the misspecification of the technical coefficients of the aggregate
data and this occurs unless the aggregation is only done across sets of industries that share the same input
mix. That is, aggregation is consistent when

aAGG (t ′ |k ′ ) is unbiased ⇔ For every t ∈ κ (t ′) we have a (t |k ) = a (t |l ) ∀k, l ∈ κ (k ′) (51)

When this condition fails the calculation of upstream input requirements are biased. To seewhy imagine
we wish to compute the amount of inputs purchased from t ′ through k ′ for the production of l ′. In general
the true number does not equal that implied by the aggregate technical coefficients:

∑

t∈κ(t′)

∑

k∈κ(k′)

∑

l∈κ(l′)
a (t |k )X (k, l) 6= aAGG (t ′ |k ′ )XAGG (k ′, l ′) .

On the left X (k, l) is the inputs each l purchases directly from each k while a share a (t |k ) of that is spent
on further upstream inputs from t. However, because each k has different input requirements from each
t this implies that the the average input purchases from the industries in κ (k ′) of the industries κ (t ′), as
indicated by aAGG (t ′ |k ′ ), may be poor approximation of the actual value of these input flows. The latter is
only accurate in the special case in which a (t |k ) is constant across all the elements of κ (k ′).36 In sum, the
I-O analysis GVCs may be biased when the data is only observable at KAGG even if I-O analysis is correct
at a more disaggregate level K.

C.2 Industry Aggregation Bias in Practice

The I-O tables onwhichGVCs are estimated typically contain around 50 or less industries per countrywhich
suggests that the industry aggregation bias is probably substantial.37 I will now show that, at least for the
U.S., this issue is indeed present. Specifically, the most disaggregate I-O data for the U.S. is available for
379 sectors for the year 2007 but, for simplicity, I will concentrate on manufactures which encompasses 237
sectors.

36In this case

∑

t∈κ(t′)

∑

k∈κ(k′)

∑

l∈κ(l′)
a (t,k)X (k, l) =

∑

t∈κ(t′)

∑
k∈κ(k′) X (t,k)∑
k∈κ(k′) Y (k)


 ∑

k∈κ(k′)

∑

l∈κ(l′)
X (k, l)


 = aAGG (t ′,k ′)XAGG (k ′, l ′) .

37In the words of Hatanaka (1952) and McManus (1956b), regarding the condition in (51) “There is very little chance
that they will be fulfilled by any model”.

60



The exercise I run is the following, let K be the set of 6−digit NAICS sectors (237) and let KAGG be the
set of 3−digit NAICS sectors (19). Is it true that all of the 6−digit sectors within each 3−digit share the same
input shares? No.

First, I focus on a specific 3−digit sector ‘Computer and electronic products’, which is composed of 20
6−digit sectors. The left panel of figure C.1 plots the implied input shares of its five largest 6−digit codes.
That is, the five industries labeled on the y−axis account for 50% of the output of ‘Computer and electronic
products’. Meanwhile, the input shares are shown for the five most important input suppliers. In this case
input expenditures on ‘Other electronic components’ accounts for 3.6% of the aggregate output value of the
3−digit sector and using the 3−digit data implies assuming that these are also the input expenditure shares
of each specific 6−digit sector. However, the panel on the right shows the true input shares for each 6-digit
sector. The differences are substantial. For example, the 6−digit code ‘Electronic computers’ spends 11% of
its output value on ‘Computer storage devices’ but the other four 6−digit codes spend almost zero on these
inputs. The aggregation bias is manifest in that the 3−digit sourcing shares in the left panel assume that
each 6−digit sector actually spends a share of 2.7% on these inputs.

Second, to look at the overall picture I compute the coefficient of variation−standard deviation relative to
mean−of input shares from each sourcewithin each 3−digit code. Specifically, for each 3−digit k ′ I compute
the coefficient of variation of a (t |k ) for each t ∈ K and across k ∈ κ (k ′). I-O analysis at the 3−digit level is
only correct under the assumptions that I-O analysis is correct at the 6−digit level and that all 6−digit sectors
κ (k ′) in each 3−digit k ′ have the same sourcing shares from each industry. In such a case the coefficient of
variation will be zero. When the aggregation is done across sectors with very different sourcing shares then
this statistic will be large and positive.

Figure C.2 shows the coefficients of variation across all 3−digit sectors in manufactures and for each
input supplier. Each circle represents the coefficient of variation of input shares from a specific source across
all of the 6−digit codes contained in each 3−digit code; the size of each circle is proportional to the share
of inputs purchased by the latter. There is one takeaway: There is substantial variation in input shares
within each 3−digit sector. For example, for ‘Computers and electronics’ the five biggest circles are those
corresponding to input shares from the sources in figure C.1 and the values are 1.0, 1.3, 2.1, 2.6, and 1.1. In
this case, the largest input source is ‘Other electronic components’ and as figure C.1 shows there is relatively
little variation in input shares and so the coefficient of variation is 1.0. In contrast, figure C.1 shows high
variation for ‘Broadcast and wireless communications equipments’ and for ‘Computer storage devices’ and
these appear with values 2.1 and 2.6.
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Figure C.1: Input sourcing shares of the five largest 6−digit sectors in ‘Computer and elec-
tronic products’.
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Figure C.2: Variation in 6−digit sourcing shares for each 3−digit sector in manufactures.
Each circle corresponds to the coefficient of variation of the input sourcing shares from a
specific source across all 6−digit sectorswithin each 3-digit sector. Circle size is proportional
to the share of aggregate input purchases from each source. Data corresponds to 2007 U.S.
I-O tables.
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D Additional Results

D.1 The Perils of Roundabout Production Models: U.S.-China Imbalance
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Figure D.1: U.S.-China Value-Added Trade in 2014 Using WIOD Data. The left panel plots
the histogram for the joint distribution of Chinese consumption ofU.S. value-added andU.S.
consumption of Chinese value-added across 1,000 simulations of the specialized inputs toy
model. The right panel plots the histogram of the U.S.’s bilateral value-added trade balance
with China. The solid black lines indicate the value of these statistics when computed with
the roundabout production model or directly with I-O analysis.

D.2 Results from the QP Framework

D.2.1 The QP Objective Function

The microdata contains import-export shipments from which I can construct the distribution of foreign
manufacturing inputs used in manufacturing exports as shown in Figure 1.1. Let λX ({j ′′,k ′′} , {MEX,k ′} , j)
denote the share of manufacturing inputs from {j ′′,k ′′} in the intermediate input exports from {MEX,k ′}
to j and define the analogous share but for final goods as λG ({j ′′,k ′′} , {MEX,k ′} , j). I define the targets for
import-export linkages as follows. For all j ′′, j ∈ J\MEX and k ′′,k ′ ∈ KMAN let

cX ({j ′′,k ′′} , {MEX,k ′} , {j,k}) =
∑
i∈J\MEX

∑
t∈KMAN

X ({i, t} , {MEX,k ′})
1

1−β({MEX,k′})

∑
i∈J\MEX

∑
t∈K X ({i, t} , {MEX,k ′})

λX ({j ′′,k ′′} , {MEX,k ′} , j) ,

cG ({j ′′,k ′′} , {MEX,k ′} , j) =
∑
i∈J\MEX

∑
t∈KMAN

X ({i, t} , {MEX,k ′})
1

1−β({MEX,k′})

∑
i∈J\MEX

∑
t∈K X ({i, t} , {MEX,k ′})

λG ({j ′′,k ′′} , {MEX,k ′} , j) .
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The input shares from other foreign sectors, i.e. for all j ′′, j ∈ J\MEX, k ′′ ∈ K\KMAN, and k ′ ∈ KMAN, are
given by

cX ({j ′′,k ′′} , {MEX,k ′} , {j, k}) = X ({j ′′,k ′′} , {MEX,k ′})
1

1−β({MEX,k′})

∑
i∈J\MEX

∑
t∈K X ({i, t} , {MEX,k ′})

X ({MEX,k ′} , {j,k}) ,

cG ({j ′′,k ′′} , {MEX,k ′} , j) = X ({j ′′,k ′′} , {MEX, k ′})
1

1−β({MEX,k′})

∑
i∈J\MEX

∑
t∈K X ({i, t} , {MEX,k ′})

F ({MEX,k ′} , j) .

And the input shares from Mexico are set to zero, i.e. for j ′′ = MEX, j ∈ J\MEX, k ′′ ∈ K, and k ′ ∈ KMAN.
The corresponding weights in theQ objective function are set to a large positive number proportional to the
level of these flows. All other targets take their I-O values given by

cX ({j ′′,k ′′} , {MEX,k ′} , {j,k}) = X ({j ′′,k ′′} , {MEX,k ′})
1

1−β({MEX,k′})

∑
i∈J
∑
t∈K X ({i, t} , {MEX,k ′})

X ({MEX,k ′} , {j,k}) ,

cG ({j ′′,k ′′} , {MEX,k ′} , j) = X ({j ′′,k ′′} , {MEX,k ′})
1

1−β({MEX,k′})

∑
i∈J
∑
t∈K X ({i, t} , {MEX,k ′})

F ({MEX,k ′} , j) .

Note that these targets all satisfy the bilateral data constraints in equations (29) and (30) but not the consis-
tency constraints in equation (31).
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D.2.2 Foreign Value-Added Shares in Mexican Manufacturing Exports to the U.S.

Roundabout Specialized Inputs
X, F,X+ F X F X+ F

U.S. Foreign U.S. Foreign U.S. Foreign U.S. Foreign
Motor Vehicles, Trailers 0.17 0.38 0.18 0.47 0.38 0.63 0.30 0.56
Computers, Electronics, Opt. 0.24 0.63 0.28 0.53 0.14 0.70 0.18 0.64
Electrical Equipment 0.19 0.46 0.17 0.36 0.26 0.60 0.21 0.47
Machinery 0.14 0.32 0.11 0.21 0.23 0.46 0.17 0.33
Wood, Furniture 0.13 0.29 0.12 0.26 0.24 0.46 0.22 0.43
Food, Beverages, Tobacco 0.09 0.16 0.40 0.57 0.38 0.58 0.38 0.58
Textiles, Apparel, Leather 0.11 0.25 0.11 0.26 0.25 0.46 0.23 0.43
Other Transport 0.16 0.29 0.14 0.26 0.25 0.36 0.18 0.29
Chemicals, Pharmaceuticals 0.16 0.27 0.39 0.59 0.28 0.63 0.36 0.60
Fabricated Metal Products 0.14 0.33 0.27 0.50 0.30 0.60 0.27 0.52
Rubber, Plastics 0.18 0.33 0.23 0.44 0.29 0.54 0.25 0.46
Coke, Refined Oil Products 0.14 0.22 0.59 0.81 0.30 0.72 0.52 0.78
Paper, Recorded Media 0.16 0.27 0.42 0.59 0.37 0.62 0.41 0.60
Non-Metallic Minerals 0.08 0.16 0.19 0.37 0.11 0.27 0.19 0.37
Basic Metals 0.09 0.21 0.22 0.46 0.03 0.05 0.22 0.46

Total X 0.16 0.37 0.23 0.44
Total X, Excl. C-E-O 0.15 0.32 0.22 0.43
Total F 0.17 0.41 0.27 0.60
Total F, Excl. C-E-O 0.15 0.33 0.31 0.56
Total X+ F 0.17 0.39 0.25 0.52
Total X+ F, Excl. C-E-O 0.15 0.33 0.27 0.49

Table D.1: U.S. and Foreign Value-Added Shares inMexican Exports to the U.S.: The round-
about estimates are computed with I-O analysis and are common across intermediate input
(X), final good (F), and overall exports (X + F). The specialized inputs estimates are com-
puted with the QP framework using theMexican microdata and vary depending on the use
of output. Bilateral data is from theWIOD and for 2014. The last six rows present the shares
for overall manufacturing andmanufacturing excluding computers, electronics, and optical
equipment, across intermediate, final, and aggregate exports.
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D.2.3 Foreign Input Shares in Mexican Manufacturing Exports to the U.S.

Common 75% Processing
I-O Analysis Benchmark Input Shares Trade
X G X G X G X G

Motor Vehicles, Trailers 0.43 0.43 0.64 0.93 0.81 0.97 0.60 0.73
Computers, Electronics, Optical 0.76 0.76 0.57 0.88 0.67 0.96 0.69 0.75
Electrical Equipment 0.55 0.55 0.41 0.79 0.49 0.87 0.42 0.69
Machinery 0.44 0.44 0.26 0.70 0.26 0.82 0.32 0.61
Wood, Furniture 0.33 0.33 0.29 0.64 0.43 0.89 0.28 0.55
Food, Beverages, Tobacco 0.17 0.17 0.95 0.96 0.82 0.97 0.35 0.41
Textiles, Apparel, Leather 0.34 0.34 0.42 0.78 0.50 0.96 0.34 0.66
Other Transport 0.47 0.47 0.36 0.62 0.65 0.71 0.34 0.52
Chemicals, Pharmaceuticals 0.29 0.29 0.87 0.92 0.87 0.94 0.65 0.66
Fabricated Metal Products 0.36 0.36 0.67 0.83 0.79 0.92 0.57 0.67
Rubber, Plastics 0.37 0.37 0.58 0.74 0.86 0.95 0.48 0.61
Coke, Refined Oil Products 0.15 0.15 0.96 0.83 0.98 0.97 0.56 0.13
Paper, Recorded Media 0.28 0.28 0.88 0.93 0.91 0.93 0.67 0.69
Non-Metallic Minerals 0.19 0.19 0.69 0.47 0.83 0.62 0.44 0.28
Basic Metals 0.22 0.22 0.68 0.00 0.81 0.00 0.52 0.00

Table D.2: Foreign Input Shares in the Primitives from the QP Framework:
Each pair of columns presents the share of foreign inputs in Mexican exports
to the U.S. for each manufacturing sector across both sets of primitives. Specif-
ically, the X columns present the share in intermediate input exports given by∑
s∈SFOR

∑
k∈K X (s, {MEX,k ′} , {USA,k}) /

∑
s∈S
∑
k∈K X (s, {MEX,k ′} , {USA,k}) for each

k ′ in manufactures while the G columns present the share in final good exports given by∑
s∈SFOR G (s, {MEX,k ′} , USA) /

∑
s∈S G (s, {MEX,k ′} , USA), where SFOR = (J\MEX)×K.
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D.2.4 Foreign and U.S. Content in Mexican Exports to Canada and Germany
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Figure D.2: Foreign and U.S. Content in Mexican Overall Manufacturing Exports to Canada
and Germany. Note that the roundabout estimates are common across all countries.
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