Border Processing, Trade Costs and New Trade Policy

Jeronimo Carballo University of Colorado

Georg Schaur University of Tennessee Alejandro Graziano University of Maryland

Christian Volpe Martincus Inter-American Development Bank

Geneva Trade and Development Workshop

May, 2018

Introduction

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
High bo	order costs motivat	e new trad	de policy	

- Borders impose costs on trade flows
 - Traditionally: tariffs, quotas and general border effects.
 - More recently: the processing of shipments

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
High bord	ler costs motiva	te new trad	e policy	

- Borders impose costs on trade flows
 - Traditionally: tariffs, quotas and general border effects.
 - More recently: the processing of shipments
- Policy consequence: 2013 WTO Agreement on Trade Facilitation
 - Simplification, modernization, harmonization of trade processes

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
High bor	der costs motiva	te new trad	e policy	

- Borders impose costs on trade flows
 - Traditionally: tariffs, quotas and general border effects.
 - More recently: the processing of shipments
- Policy consequence: 2013 WTO Agreement on Trade Facilitation
 - Simplification, modernization, harmonization of trade processes
- Roberto Azevedo Director-General of the WTO:
 - "WTO Trade Facilitation Agreement has come into force! This is the biggest global trade deal of this century"
 - "The impact of the Trade Facilitation Agreement could be greater than the elimination of all existing tariffs around the world"

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
High bord	ler costs motiva	te new trad	e policy	

- Borders impose costs on trade flows
 - Traditionally: tariffs, quotas and general border effects.
 - More recently: the processing of shipments
- Policy consequence: 2013 WTO Agreement on Trade Facilitation
 - Simplification, modernization, harmonization of trade processes
- Roberto Azevedo Director-General of the WTO:
 - "WTO Trade Facilitation Agreement has come into force! This is the biggest global trade deal of this century"
 - "The impact of the Trade Facilitation Agreement could be greater than the elimination of all existing tariffs around the world"
 - Hopes are high!

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
High bord	ler costs motiva	te new trad	e policy	

- Borders impose costs on trade flows
 - Traditionally: tariffs, quotas and general border effects.
 - More recently: the processing of shipments
- Policy consequence: 2013 WTO Agreement on Trade Facilitation
 - Simplification, modernization, harmonization of trade processes
- Roberto Azevedo Director-General of the WTO:
 - "WTO Trade Facilitation Agreement has come into force! This is the biggest global trade deal of this century"
 - "The impact of the Trade Facilitation Agreement could be greater than the elimination of all existing tariffs around the world"
 - Hopes are high!
- Don't know how firms manage these processes \Rightarrow Don't know how this affects trade, trade theory, or, trade facilitation

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
High bord	ler costs motivat	te new trad	le policy	

- Borders impose costs on trade flows
 - Traditionally: tariffs, quotas and general border effects.
 - More recently: the processing of shipments
- Policy consequence: 2013 WTO Agreement on Trade Facilitation
 - Simplification, modernization, harmonization of trade processes
- Roberto Azevedo Director-General of the WTO:
 - "WTO Trade Facilitation Agreement has come into force! This is the biggest global trade deal of this century"
 - "The impact of the Trade Facilitation Agreement could be greater than the elimination of all existing tariffs around the world"
 - Hopes are high!
- Don't know how firms manage these processes \Rightarrow Don't know how this affects trade, trade theory, or, trade facilitation
- **Goal:** Develop a systematic way to examine border processing that is comparable to existing literature, can be interpreted within trade models, useful to evaluate costs and policies.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Why is	this challenging an	d interesti	ing?	

 No comprehensive existing datasets for trade processing costs ⇒ Room for empirical work.
 Introduction
 Empirical Facts
 Theory
 Empirical Evidence
 Conclusion

- No comprehensive existing datasets for trade processing costs \Rightarrow Room for empirical work.
- Firms optimize supply chains \Rightarrow *Room for theory*.

Introduction Empirical Facts Theory Empirical Evidence Conclusion
Why is this challenging and interesting?

- No comprehensive existing datasets for trade processing costs ⇒ Room for empirical work.
- Firms optimize supply chains \Rightarrow *Room for theory*.
- Policies:
 - A stew of provisions to streamline document, information and shipment processing.
 - How can we measure this in a coherent way?

Introduction Empirical Facts Theory Empirical Evidence Conclusion

- Why is this challenging and interesting?
 - No comprehensive existing datasets for trade processing costs ⇒ Room for empirical work.
 - Firms optimize supply chains \Rightarrow *Room for theory*.
 - Policies:
 - A stew of provisions to streamline document, information and shipment processing.
 - How can we measure this in a coherent way?
 - Tariffs are comparatively boring.
 - They are usually exogenously set, measurable, reported in datasets and firms take them as given...

Introduction Empirical Facts Theory Empirical Evidence Conclusion

Why is this challenging and interesting?

- No comprehensive existing datasets for trade processing costs ⇒ Room for empirical work.
- Firms optimize supply chains \Rightarrow *Room for theory*.
- Policies:
 - A stew of provisions to streamline document, information and shipment processing.
 - How can we measure this in a coherent way?
- Tariffs are comparatively boring.
 - They are usually exogenously set, measurable, reported in datasets and firms take them as given...
 - TPU and Economic Uncertainty: see Carballo, Handley and Limão (2018).

Introduction Empirical Facts Theory Empirical Evidence Conclusion

Why is this challenging and interesting?

- No comprehensive existing datasets for trade processing costs ⇒ Room for empirical work.
- Firms optimize supply chains \Rightarrow *Room for theory*.
- Policies:
 - A stew of provisions to streamline document, information and shipment processing.
 - How can we measure this in a coherent way?
- Tariffs are comparatively boring.
 - They are usually exogenously set, measurable, reported in datasets and firms take them as given...
 - TPU and Economic Uncertainty: see Carballo, Handley and Limão (2018).
- We have a major policy initiative that affects trade costs through a firm optimization mechanism
 - Don't know how trade processing affects trade
 - Hard to predict consequences of trade policy or policy effectiveness.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Our starting p	point			

- Literature shows that slow supply chains are costly (Djankov et al., 2010; Hummels and Schaur, 2013; Carballo et al. 2014; Volpe Martincus et al., 2015; Fernandes et al., 2015; Evans and Harrigan, 2005; Harrigan 2010)
 - Lenghty processing procedures take longer and raise costs

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Our starting p	point			

- Literature shows that slow supply chains are costly (Djankov et al., 2010; Hummels and Schaur, 2013; Carballo et al. 2014; Volpe Martincus et al., 2015; Fernandes et al., 2015; Evans and Harrigan, 2005; Harrigan 2010)
 - Lenghty processing procedures take longer and raise costs
- How to measure time?
 - Enterprise Survey and Doing Business: Aggregate de facto versus de jure measures (Hallward-Driemeier and Prichett, 2015)
 - Total border time versus time in inspections, unloading, etc
 - Time to import versus time to export versus time in ocean transit (Djankov et al., 2010; Hummels and Schaur, 2013; Volpe Martincus et al., 2015; Fernandes et al., 2015)

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Our starting p	point			

- Literature shows that slow supply chains are costly (Djankov et al., 2010; Hummels and Schaur, 2013; Carballo et al. 2014; Volpe Martincus et al., 2015; Fernandes et al., 2015; Evans and Harrigan, 2005; Harrigan 2010)
 - Lenghty processing procedures take longer and raise costs
- How to measure time?
 - Enterprise Survey and Doing Business: Aggregate de facto versus de jure measures (Hallward-Driemeier and Prichett, 2015)
 - Total border time versus time in inspections, unloading, etc
 - Time to import versus time to export versus time in ocean transit (Djankov et al., 2010; Hummels and Schaur, 2013; Volpe Martincus et al., 2015; Fernandes et al., 2015)
- How to translate time to money?
 - What is the appropriate time cost function we have to estimate?
 - How does the interpretation change with different time measues?
 - Identification?

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What we do	in this paper			

• Empirical Facts to characterize the border process.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What we	e do in this paper			

- Empirical Facts to characterize the border process.
- **Theory:** Firms optimize supply chains taking into account delivery windows and random processing times.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What w	e do in this paper			

- Empirical Facts to characterize the border process.
- **Theory:** Firms optimize supply chains taking into account delivery windows and random processing times.
 - Provide fundamental for time cost elasticities and sources for heterogeneity.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What w	e do in this paper			

- Empirical Facts to characterize the border process.
- **Theory:** Firms optimize supply chains taking into account delivery windows and random processing times.
 - Provide fundamental for time cost elasticities and sources for heterogeneity.
 - Clarify measurement and identification problems.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What w	e do in this paper			

- Empirical Facts to characterize the border process.
- **Theory:** Firms optimize supply chains taking into account delivery windows and random processing times.
 - Provide fundamental for time cost elasticities and sources for heterogeneity.
 - Clarify measurement and identification problems.
 - Provide a theory consistent time-cost function.

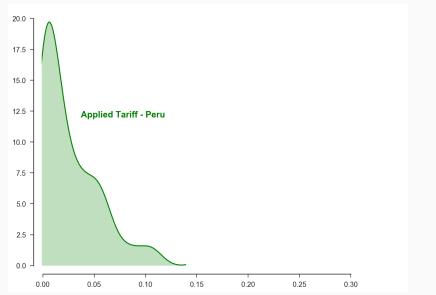
Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What we do i	in this paper			

- Empirical Facts to characterize the border process.
- **Theory:** Firms optimize supply chains taking into account delivery windows and random processing times.
 - Provide fundamental for time cost elasticities and sources for heterogeneity.
 - Clarify measurement and identification problems.
 - Provide a theory consistent time-cost function.
 - Inform cost rankings based on different time meaures.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What w	e do in this paper			

- Empirical Facts to characterize the border process.
- **Theory:** Firms optimize supply chains taking into account delivery windows and random processing times.
 - Provide fundamental for time cost elasticities and sources for heterogeneity.
 - Clarify measurement and identification problems.
 - Provide a theory consistent time-cost function.
 - Inform cost rankings based on different time meaures.
- Empirics: Detailed import data for Peru.
 - Merge detailed processing of shipments with firm level import data.
 - Estimate the costs elasticities employing fixed effect and IV techniques.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
What w	e do in this paper			

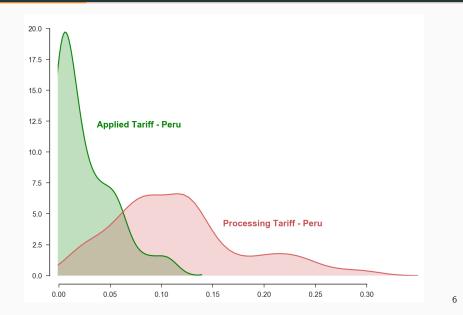

- Empirical Facts to characterize the border process.
- **Theory:** Firms optimize supply chains taking into account delivery windows and random processing times.
 - Provide fundamental for time cost elasticities and sources for heterogeneity.
 - Clarify measurement and identification problems.
 - Provide a theory consistent time-cost function.
 - Inform cost rankings based on different time meaures.
- Empirics: Detailed import data for Peru.
 - Merge detailed processing of shipments with firm level import data.
 - Estimate the costs elasticities employing fixed effect and IV techniques.
- Policy:
 - Estimate border processing tariff equivalent.
 - Provide a theory consistent processing cost measure to evaluate costs and measure peformance.
 - Quantify policy experiments.

Theory

Empirical Evidence

Conclusion

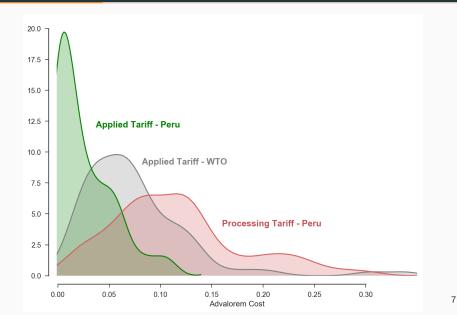
Preview: Tariffs and Processing Tariff



Theory

Empirical Evidence

Conclusion


Preview: Tariffs and Processing Tariff

Theory

Conclusion

Preview: Tariffs and Processing Tariff

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Related Lite	erature			

• A set of papers identify trade costs with respect to frictions related to crossing borders (McCallum, 1995; Helliwell, 1996; and Anderson and van Wincoop, 2003).

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Related Lite	rature			

- A set of papers identify trade costs with respect to frictions related to crossing borders (McCallum, 1995; Helliwell, 1996; and Anderson and van Wincoop, 2003).
 - Instead of estimating a catch all border effect, we quantify the impact of detailed border procedures.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Related Lit	erature			

- A set of papers identify trade costs with respect to frictions related to crossing borders (McCallum, 1995; Helliwell, 1996; and Anderson and van Wincoop, 2003).
 - Instead of estimating a catch all border effect, we quantify the impact of detailed border procedures.
- A number of papers show that time is costly (Evans and Harrigan 2005; Freund et al., 2010; Hummels and Schaur 2013; and Volpe Martincus et al. 2015).
 - Our theory provides a structural foundation for time cost estimates and shows that their estimates don't apply to evaluate trade facilitation policy and that firm heterogeneity is important issue at the firm level.

Empirical Facts

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Import Pro	ocessing Data			

- Detailed data taken from import declarations and load manifests at the transaction level data, 2007-2013.
- Source: Peru's National Tax Agency (SUNAT).
- For each shipment clearing through the sea-port of Callao we observe:
 - 1. Date when the ship arrived.
 - 2. Date the shipment (container) was unloaded.
 - 3. Date the customs import declaration was created and registered.
 - 4. The customs channel.
 - 5. Date the shipment was released by customs.
- Transaction Level: importing firm-by-export country-by-HS10 product-by-shipment

Fact 1- Processing Time and Storage Time

Stage	Channel	Mean	5th	50th	95th
Total Border	All	16.5	4.0	12.0	44.0
	Green	11.6	4.0	8.0	29.5
	Red	23.2	7.0	19.0	55.0
Storage	All	11.0	2.0	7.0	32.0
	Green	9.7	2.0	7.0	27.0
	Red	12.5	2.0	8.0	37.0
Port and Custom	All	6.4	1.0	4.0	19.0
("Processing")	Green	3.8	1.0	2.0	6.0
	Red	12.1	4.0	9.0	26.0

- Total Border: duration from arrival to customs clearance.
- **Processing**: time spend in actual processing stages: Port and Custom.

Fact 1- Processing Time and Storage Time

Stage	Channel	Mean	5th	50th	95th
Total Border	All	16.5	4.0	12.0	44.0
	Green	11.6	4.0	8.0	29.5
	Red	23.2	7.0	19.0	55.0
Storage	All	11.0	2.0	7.0	32.0
	Green	9.7	2.0	7.0	27.0
	Red	12.5	2.0	8.0	37.0
Port and Custom	All	6.4	1.0	4.0	19.0
("Processing")	Green	3.8	1.0	2.0	6.0
	Red	12.1	4.0	9.0	26.0

- Total Border: duration from arrival to customs clearance.
- **Processing**: time spend in actual processing stages: Port and Custom.
- Firms face a **time distribution** where the storage and channels matter.

Fact 2- Exporters manage storage time

	Storage			
Port Time	-0.152***	-0.169***	-0.111***	-0.132***
	(0.011)	(0.013)	(0.011)	(0.012)
	Customs Time			
Storage Time	-0.001	-0.009	-0.005	-0.016
	(0.007)	(0.008)	(0.006)	(0.011)
Firm FE	Yes	No	Yes	No
Product-Origin FE	Yes	No	Yes	No
Firm-Product-Origin FE	No	Yes	No	Yes
Day FE	No	No	Yes	Yes

• Firms absorb longer unloading times with shorter storage times

Fact 2- Exporters manage storage time

	Storage				
Port Time	-0.152***	-0.169***	-0.111***	-0.132***	
	(0.011)	(0.013)	(0.011)	(0.012)	
	Customs Time				
Storage Time	-0.001	-0.009	-0.005	-0.016	
	(0.007)	(0.008)	(0.006)	(0.011)	
Firm FE	Yes	No	Yes	No	
Product-Origin FE	Yes	No	Yes	No	
Firm-Product-Origin FE	No	Yes	No	Yes	
Day FE	No	No	Yes	Yes	

- Firms absorb longer unloading times with shorter storage times
- Longer storage times have no effect on customs times

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion

Fact 3- Firm Heterogeneity

Stage	Firm Type	Mean	5th	50th	95th
Total Border	New Importers	24.7	7.0	20.0	60.0
	Incumbent	15.2	4.0	11.0	40.0
Processing	New Importers	9.8	2.0	8.0	25.0
	Incumbent	5.8	1.5	4.0	17.0
Total Border	Non-Exporters	17.2	5.0	13.0	45.0
	Exporters	13.0	4.0	9.0	37.0
Processing	Non-Exporters	7.2	2.0	5.0	20.0
	Exporters	4.8	1.0	3.0	14.0

• Variation related to standard trade models hidden in aggregate data.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion

Fact 3- Firm Heterogeneity

Stage	Firm Type	Mean	5th	50th	95th
Total Border	New Importers	24.7	7.0	20.0	60.0
	Incumbent	15.2	4.0	11.0	40.0
Processing	New Importers	9.8	2.0	8.0	25.0
	Incumbent	5.8	1.5	4.0	17.0
Total Border	Non-Exporters	17.2	5.0	13.0	45.0
	Exporters	13.0	4.0	9.0	37.0
Processing	Non-Exporters	7.2	2.0	5.0	20.0
	Exporters	4.8	1.0	3.0	14.0

- Variation related to standard trade models hidden in aggregate data.
- Firms border management may be related to firm heterogeneity.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion

Fact 3- Firm Heterogeneity

Stage	Firm Type	Mean	5th	50th	95th
Total Border	New Importers	24.7	7.0	20.0	60.0
	Incumbent	15.2	4.0	11.0	40.0
Processing	New Importers	9.8	2.0	8.0	25.0
	Incumbent	5.8	1.5	4.0	17.0
Total Border	Non-Exporters	17.2	5.0	13.0	45.0
	Exporters	13.0	4.0	9.0	37.0
Processing	Non-Exporters	7.2	2.0	5.0	20.0
	Exporters	4.8	1.0	3.0	14.0

- Variation related to standard trade models hidden in aggregate data.
- Firms border management may be related to firm heterogeneity.
- Important to understand trade models.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Conclusio	ons from empiric	al facts		

• Total border times are a combination of storage times and processing times and *endogeneous* to the firms.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Conclusio	ns from empiric	al facts		

- Total border times are a combination of storage times and processing times and *endogeneous* to the firms.
- Processing times are determined by customs and port efficiency
 - · Conditional on fixed effects, less likely to be endogenous
 - Easier to measure and monitor
 - Processing times are random: random allocation to customs inspection, document handling, port strikes, equipment failure, etc.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Conclusion	s from empirio	cal facts		

- Total border times are a combination of storage times and processing times and *endogeneous* to the firms.
- Processing times are determined by customs and port efficiency
 - · Conditional on fixed effects, less likely to be endogenous
 - Easier to measure and monitor
 - Processing times are random: random allocation to customs inspection, document handling, port strikes, equipment failure, etc.
- Firms optimize
 - Longer processing times are correlated with lower buffer times
 - Have to interpret processing costs through firms' supply chain optimization

Theory

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Model of	expected time	cost		

- Firms choose the time they allow to clear the port, t_c
- Problem: Processing time (t_p) is random with $t_p \sim rac{arphi t_{min}^{\circ}}{t_r^{\circ+1}}$
 - If $t_p \leq t_c$ then firms stores the shipment withouth additional costs
 - If $t_p > t_c$ then late shipment faces late costs: $\left(rac{t_p}{t_c}
 ight)^\omega rv$
- Trade off: increasing t_c...
 - Raises supply chain cost: $t_c^{\vartheta} v$ with $\vartheta > 0$
 - Lowers expected late delivery cost: $\int_{t_c}^{\infty} \left(\frac{t_p}{t_c}\right)^{\omega} r v \frac{\varphi t_{min}^{\varphi}}{t_c^{\varphi+1}} dt_p$
- Objective: Minimize $ETC = \int_{t_c}^{\infty} \left(\frac{t_p}{t_c}\right)^{\omega} r v \frac{\varphi t_{min}^{\varphi}}{t_p^{\varphi+1}} dt_p + t_c^{\vartheta} v$

• Solution:
$$t^* = t_{\min}^{\frac{\varphi}{\varphi+\vartheta}} \times \left(\frac{r\varphi^2}{(\varphi-\omega)\vartheta}\right)^{\frac{1}{\varphi+\eta}}$$

• Intuition: If running late is costly \Rightarrow Firms schedule more buffer time

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Expected	Cost Function			

• Substitue *t*^{*} into objective to obtain:

$$\mathcal{TC} = \lambda(arphi, \omega, r, artheta) imes t_{median}^{rac{artheta arphi}{artheta + arphi}} imes v$$

- Implications:
 - Distribution matters to understand elasticity
 - Existing estimates do not directly apply
 - Multiple sources of heterogeneity across firms, industries, countries
 - Rankings based on time alone do not provide consistent cost rankings
- Rewrite to obtain: $TC = (t^*)^{\vartheta} \times v \times \frac{\vartheta + \varphi}{\omega}$
 - Different elasticity: $\vartheta > \frac{\vartheta \varphi}{\vartheta + \varphi}$
- Empirical questions:
 - Can we estimate the cost parameters?
 - Are sources of heterogeneity important?
 - Does the measurement distinction matter?

Empirical Evidence

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Empirical	Approach			

- \bullet First best: Observe contracted delivery times $\Rightarrow \mathsf{not}$ available
- Substitute cost into CES import demand:

$$ln(v_{ihxy}^{fob}) = \delta_{hy} + \delta_{iy} + (1 + \gamma)ln(p_{hxy}^{fob}) + \gamma ln(\lambda_{ihx}) + \gamma ln(\tau_{ihxy}) + \gamma \chi ln(\hat{t}_{med,ihxy}) + u_{ihxy}$$

- *i* : importer, *h* : product, *x* : origin, *y* : year, $\chi = \frac{\vartheta \varphi}{\vartheta + \varphi}$
- p_{hxy}^{fob} and λ_{ihx} absorb with fixed effects
- $au_{\textit{ihxy}}$ absorbed with fixed effects and included in specification
- Acomodate single and multi product firms
- Plug in solution: $\hat{t}_{med,ihxy} = E(MedianTime) + \epsilon_{ihxy}$
- No substitution across ports and customs offices
- Source of endogeneity: shipment size, measurement, demand shocks $\Rightarrow IV$
 - Port congestion: Line of ships before arrival

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Data - S	napshot			

Year	Import Value	#Importers	#Origins	#Products
2007	19,100	19,290	199	6,989
2008	27,900	22,542	205	6,230
2009	20,600	23,597	201	6,174
2010	28,200	25,592	203	6,233
2011	36,100	26,804	210	6,177
2012	40,200	28,799	211	6,302
2013	41,100	30,131	209	6,303
	Per	centage Share (Callao	
2007	72.3	64.0	86.4	92.4
2008	72.4	65.4	87.3	92.6
2009	73.8	65.7	93.0	93.0
2010	75.5	64.8	84.7	92.9
2011	76.7	65.8	84.8	93.2
2012	75.9	65.5	90.5	93.3
2013	74.7	65.6	88.5	93.2

Introduction	Empiri	cal Facts	TI	neory	Empir	ical Evidence		Conclusion
		Pr	ocessing Ti	me		Total Time		
		OLS	IV1	IV2	OLS	IV1	IV2	
·	Time	-0.049 ^a	-0.236ª	-0.234ª	-0.057 ^a	-0.556 ^a	-0.551 ^a	
		(0.005)	(0.011)	(0.011)	(0.005)	(0.026)	(0.026)	
	Trade Costs			-1.541 ^a			-1.540°	
				(0.044)			(0.044)	
	IV1: Congestion		0.028 ^a	0.028 ^a		0.009 ^a	0.009 ^a	
			(0.000)	(0.000)		(0.000)	(0.000)	
	IV2: Channel		0.651 ^a	0.651 ^a		0.281	0.281 ^a	
			(0.003)	(0.003)		(0.003)	(0.003)	
	F-Test		33,593	33,594		6,632	6,,633	
			[0.000]	[0.000]		[0.000]	[0.000]	
	Hansen		0.562	0.570		0.949	0.934	
			[0.453]	[0.450]		[0.330]	[0.334]	
	Firm-Y FE	Yes	Yes	Yes	Yes	Yes	Yes	
	Orig-Prod-Y FE	Yes	Yes	Yes	Yes	Yes	Yes	
	Observations	589,842	589,842	589,842	589,844	589,844	589,844	18

	Pi	rocessing Ti	ime		Total Time	
	OLS	IV1	IV2	OLS	IV1	IV2
Time	-0.049 ^a	-0.236 ^a	-0.234 ^a	-0.057 ^a	-0.556 ^a	-0.551 ^a
	(0.005)	(0.011)	(0.011)	(0.005)	(0.026)	(0.026)
Trade Costs			-1.541 ^a			-1.540 ^a
			(0.044)			(0.044)

 $^a significant$ at 1% - Clustered S.E. at Firm level

• OLS is subject to attenuation bias due to measurement error and high dimensional FE.

	Pi	rocessing Ti	ime		Total Time	
	OLS	IV1	IV2	OLS	IV1	IV2
Time	-0.049 ^a	-0.236 ^a	-0.234 ^a	-0.057 ^a	-0.556 ^a	-0.551 ^a
	(0.005)	(0.011)	(0.011)	(0.005)	(0.026)	(0.026)
Trade Costs			-1.541 ^a			-1.540 ^a
			(0.044)			(0.044)

^asignificant at 1% - Clustered S.E. at Firm level

- OLS is subject to attenuation bias due to measurement error and high dimensional FE.
- Tariffs, freights and insurances charges are independent of processing times (as assumed in theory) and provide an estimate for ρ.

	Pi	rocessing Ti	ime		Total Time	
	OLS	IV1	IV2	OLS	IV1	IV2
Time	-0.049 ^a	-0.236 ^a	-0.234 ^a	-0.057 ^a	-0.556 ^a	-0.551 ^a
	(0.005)	(0.011)	(0.011)	(0.005)	(0.026)	(0.026)
Trade Costs			-1.541 ^a			-1.540 ^a
			(0.044)			(0.044)

 $^a significant$ at 1% - Clustered S.E. at Firm level

• Total time overestimates the processing elasticity as our model predicts. *Intuition:* storage time dampens the variation.

	Pi	rocessing Ti	ime		Total Time	
	OLS	IV1	IV2	OLS	IV1	IV2
Time	-0.049 ^a	-0.236 ^a	-0.234 ^a	-0.057 ^a	-0.556 ^a	-0.551 ^a
	(0.005)	(0.011)	(0.011)	(0.005)	(0.026)	(0.026)
Trade Costs			-1.541 ^a			-1.540 ^a
			(0.044)			(0.044)

 $^a significant$ at 1% - Clustered S.E. at Firm level

- Total time overestimates the processing elasticity as our model predicts. *Intuition:* storage time dampens the variation.
- High attenuation bias for OLS for total time. *Intuition:* firms can actively manage storage (additional endogeneity).

Introduction	Empirical Facts	I heory	Empirical Evidence	Conclusion
Results -	Robustness Che	ecks		

- Different sets of FE:
 - Firm-Year
 - Origin-Product-Year
 - Firm-Product-Year, Origin-Product-Year
 - Firm-Origin-Year, Origin-Product-Year
 - Firm-Year, Origin-Product-Year, Firm-Product-Origin
 - Firm fixed effects
- Controling Sample for:
 - Shipments pre-processed (small share of shipment)
 - Products that requires permits to import
 - Light products
- IV:
 - Different windows for congestion: 2-10 days
 - Focusing only on physical inspection
- Clustering at different levels
- Alternative specification: specify prices and freight charges

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Results -	Quantification			

- Elasticities are not enough to quantify border processing times:
 - It requires estimating $\lambda(\varphi, \vartheta, r, \omega)$: ugly function!
 - φ is estimated from the processing time distribution

 $\Rightarrow t_{median} =^{\varphi} \sqrt{2} \times t_{min}$

- With χ and φ we can recover ϑ
- Lower bound on λ that depends only on φ, ϑ based on our model

• We show that
$$\lambda > \underline{\lambda} = \frac{\frac{\vartheta + \varphi}{\varphi}}{2^{\frac{\vartheta}{\vartheta + \varphi}}}$$

- In the paper we have mutliple ways to compute lambda
- Bootstrapped estimates to evaluate significance.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion

Results - Lower Bound Quantification

	IV1	IV2
γ	2.977	1.541
χ	0.079ª	0.152ª
	(0.008)	(0.008)
φ	2.072ª	2.072ª
	(0.037)	(0.037)
θ	0.082ª	0.164ª
	(0.007)	(0.016)
$(\underline{\lambda}-1)$	0.013ª	0.026ª
	(0.002)	(0.004)
(Time Cost -1)	0.167ª	0.346ª
	(0.015)	(0.036)

• At the average median processing time, border processing tariff between 17% and 35% where expected late costs are between 4.5% and 9.7%.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion

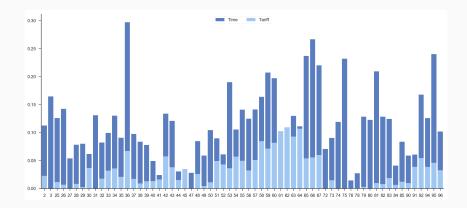
Results - Lower Bound Quantification

	IV1	IV2
γ	2.977	1.541
χ	0.079ª	0.152ª
	(0.008)	(0.008)
φ	2.072ª	2.072ª
	(0.037)	(0.037)
θ	0.082ª	0.164ª
	(0.007)	(0.016)
$(\underline{\lambda}-1)$	0.013ª	0.026ª
	(0.002)	(0.004)
(Time Cost -1)	0.167ª	0.346ª
	(0.015)	(0.036)

• Policy experiment: dropping physical inspection of documents reduces processing from 5 to 2 days and border processing tariff to 9% and 12%.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Results -	Quantification:	Firm Hetero	ogeneity	

- Trade costs are usually assumed homogeneous across firms.
 - This mutes policy consequences and conceals firms' optimal responses to trade barriers.
- Our results shows heterogeneity across firms.
 - Larger and Exporter Firms are more elastic to delays but compensate with investing in supply chain and reducing time.
 - New importers face greater costs.


	Size		Expo	Export Experience		Import Experience			
	SF	LF	Diff	NEF	EF	Diff	NIF	IF	Diff
Time	-0.204 ^a	-0.296 ^a	а	-0.199 ^a	-0.268 ^a	а	-0.422 ^a	-0.207 ^a	а
γ	2.922	3.129		2.945	3.038		2.940	2.977	
x	0.070 ^a	0.094 ^a	а	0.068 ^a	0.088 ^a	а	0.144 ^a	0.069 ^a	а
φ	2.011 ^a	2.128 ^a		1.999 ^a	2.070 ^a		3.053 ^a	2.037 ^a	а
θ	0.072	0.099	Ь	0.070	0.092	Ь	0.151	0.072	а
$(\underline{\lambda} - 1)$	0.011 ^a	0.015 ^a	с	0.011 ^a	0.014 ^a	с	0.016 ^a	0.011 ^a	
Avg Time	6.531	3.771		6.961	3.846		11.868	5.374	
Time Cost	0.153 ^a	0.150 ^a		0.153 ^a	0.142 ^a		0.449 ^a	0.136 ^a	а

Theory

Empirical Evidence

Conclusion

Results - Quantification: HS2 Specific

Conclusion

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Conclusion				

- We focus on the role of border processing as a source of border costs.
- We model firm's optimal time management to meet delivery schedules when processing times are uncertain. We embed this into an import demand setting to develop an identification strategy.
- We estimate the model and structural parameters using highly detailed data from Peru.
- Our results show
 - Border processing imposes a trade cost greater than average applied WTO tariffs.

Introduction	Empirical Facts	Theory	Empirical Evidence	Conclusion
Conclusion				

- Our results show
 - Processing tariffs are dispersed across products, and especially new trade relationship suffer from high border costs.
 - Aggregate measures of border-processing are difficult to interpret as cost ranking because they combine actual processing times with optimally chosen storage times. Even actual processing times systematically vary with firms and product characteristics. Second moments about the processing distribution would be useful to interpret elasticities.