Relationship Stickiness: Measurement and Applications to International Economics

Julien Martin (Université du Québec à Montréal and CEPR) Isabelle Mejean (CREST, École Polytechnique and CEPR) Mathieu Parenti (Université Libre de Bruxelles and CEPR)

Geneva Trade and Development Workshop June 5, 2018

<ロト <四ト <注入 <注下 <注下 <

Definition

- Most trade models assume importers may switch across suppliers at no costs
- In practice, changing supplier might be costly
 - $\Rightarrow\,$ Difficult: few suppliers, search frictions, specific investments or elaborate contracts
 - \Rightarrow Easy: products purchased on spot markets
- This characteristics encompasses several concepts including:
 - \Rightarrow investment specificity (eg. Feenstra & Hanson 2005)
 - \Rightarrow relationship specificity (eg. Nunn 2007)
 - ⇒ input specificity (eg. Barrot & Sauvagnat 2016)
 - ⇒ lock-in effects (eg. Antras & Staiger 2012)

 \Rightarrow In the paper, we use the term **relationship-stickiness**

Martin, Mejean, Parenti

Relationship-stickiness

2017 2 / 37

Motivation

Stickiness of trade relationships is key for many (trade) analysis:

- Levchenko (Restud, 2007) & Nunn (QJE, 2007): comparative advantage
- Acemoglu et al. (JF, 2009): vertical integration
- Antras & Staiger (AER, 2012): trade policy
- Antras & Chor (ECTA, 2013): global value chains
- Barrot & Sauvagnat (QJE, 2016): propagation of shocks in networks

Martin, Mejean, Parenti

Relationship-stickiness

2017 3 / 37

How to assess the nature of a transaction?

- \Rightarrow Extent to which product markets are organized
 - Rauch (1999): Product differentiation
 - Products traded on organized exchanges, reference prices, differentiated
 - Relationship specificity (Nunn 2007)
 - Builds on Rauch's (1999) measure of products' differentiation
 - \Rightarrow RS proxied by the share of differentiated inputs used in the production process
 - Other product-level measures have emerged:
 - ⇒ quality ladder (Khandelwal 2010), share of wholesalers (Bernard et al. 2010), distance to final demand (Antras, Chor, Fally, Hillberry 2012), Suppliers' R&D expenses / number of patents issued (Barrot & Sauvagnat, 2016)

⇒ We derive a new measure of relationship-stickiness for highly disaggregated traded products

Martin, Mejean, Parenti

Relationship-stickiness

2017 4 / 37

How to assess the nature of a transaction?

- \Rightarrow Extent to which product markets are organized
 - Rauch (1999): Product differentiation
 - Products traded on organized exchanges, reference prices, differentiated
 - Relationship specificity (Nunn 2007)
 - Builds on Rauch's (1999) measure of products' differentiation
 - \Rightarrow RS proxied by the share of differentiated inputs used in the production process
 - Other product-level measures have emerged:
 - ⇒ quality ladder (Khandelwal 2010), share of wholesalers (Bernard et al. 2010), distance to final demand (Antras, Chor, Fally, Hillberry 2012), Suppliers' R&D expenses / number of patents issued (Barrot & Sauvagnat, 2016)

⇒ We derive a new measure of relationship-stickiness for highly disaggregated traded products

Martin, Mejean, Parenti

Relationship-stickiness

2017 4 / 37

A fresh look at relationship-stickiness

- Length of a firm-to-firm relationship, conditional on the seller's competitiveness, is informative about the "stickiness" of the relationship
- Dispersion across products is informative about product-level attributes that tend to lengthen firm-to-firm relationships ⇒ Ex-post indicator of the "relationship-stickiness" of traded goods
- Ex-post nature of the measure implies we are agnostic about the specific source of stickiness:
 - ⇒ Product attributes, e.g. relation-specific investments (Joskow, 1987, Nunn, 2007) or switching costs (Klemperer, 1995, MacKay, 2017)
 - ⇒ Contractual habits, e.g. relational contracts under imperfect contractual enforcement and uncertainty about firms' reliability (Macchiavello & Moriaria, 2015)

What we do (1/2): Measurement

Mean durations of buyer-seller relationships

- \Rightarrow exploit firm-to-firm trade data (French exports to EU countries, 1995-2010)
- $\Rightarrow\,$ compute the duration of trade relationship, at the seller-buyer-product level
- Estimate of product-level relationship stickiness
 - \Rightarrow conceptual framework where buyers receive offers from sellers randomly
 - $\Rightarrow\,$ stickiness affects the likelihood that a buyer keeps on interacting with the same seller, conditional on an offer
 - $\Rightarrow\,$ length of relationships is a function of RS and supplier's competitiveness

(日) (周) (日) (日) (日)

What we do (2/2): Applications

We use our RS measure to analyze 5 aspects of international trade:

- 1 Gravity and the stickiness of traded goods
- 2 Institutional comparative advantage in the production of high-RS goods
- 3 Relationship stickiness and intrafirm trade
- **4** Trade-comovement correlation and the stickiness of relationships
- Stickiness, uncertainty, and the formation of exporter-importer relationships

Literature

Measures of relationship specificity

 \Rightarrow Rauch (1999), Nunn (2007)

Duration of trade relationships

- \Rightarrow Besedes and Prusa (2006): higher hazard rate for homogeneous products
- ⇒ Besedes (2008), Nitsch (2009), Békés and Muraközy (2012)

• Firm-to-firm trade

- ⇒ French data: Kramarz, Martin, Mejean (2016), Lenoir, Martin, Mejean (2016)
- \Rightarrow Other: Bernard et al. (2014), Carballo et al. (2013), Magerman et al. (2016)
- \Rightarrow Dynamics of trade: Eaton, Eslava, Jinkins, Krizan, Tybout (2016)

Literature specific to each application

(日) (周) (日) (日) (日)

Data

- French Customs data reporting the value of exports to EU countries per transaction from 1995 to 2010
- For each transaction we know the (French) seller, the 8-digit (CN) product, the EU buyer, the month and year
- Aggregate data by seller, buyer, product, month and year
- Concorde the CN8 data across years to avoid nomenclature-driven censoring
- Need to follow the history of buyers: drop buyers importing only once over the entire sample (44% of buyer×product pairs but less than 2% of the value of trade)

(日) (周) (日) (日) (日)

Description

Table: French monthly exports, Jan. 1995- Dec. 2010

	# transac.	# sellers	# buyers	# buyer*prod.
EU27	154,428,971	130,190	2,167,639	21,178,660
BE	29,754,113	88,537	251,175	3,573,758
DE	28,584,738	73,073	446,571	3,487,822
ES	19,516,222	63,219	311,756	2,724,880
GB	14,946,580	57,949	198,787	1,929,178
IT	19,818,038	62,208	394,835	3,186,895
NL	8,779,221	52,138	124,019	1,109,881

イロト イロト イヨト イヨト

Data and stylized facts

Characteristics of trade relationships

- Choice of a seller-buyer matching structure guided by the data
 - $\Rightarrow\,$ at a given date, do we observe shipments from one seller-to-one buyer, one seller-to-many buyers, many sellers-to-many buyers etc ?
- Most sellers(-product) interact with more than one buyer within a month
 - 68% of sellers export each of their products to more that one buyer per month on average (conditional on exporting)
- Buyers tend to import a product from a single French seller
 - About 95% of the buyers import a 8-digit product, at a given date, from a single French seller
- pprox many-to-one relationships : reminiscent to on-the-job search models
 - (unlike Bernard et al. 2017, we work i) at the product level, ii) at the monthly level)

Martin, Mejean, Parenti

Relationship-stickiness

2017 11 / 37

Data and stylized facts

Measuring the duration of seller-buyer trade relationships

• Challenges

- Left and right censoring
- Discontinuous relationships
- Heterogeneity in the frequency of transactions
- Single-transaction buyers (dropped)
- Focus: Mean duration (of continuous relationships)
- Alternatives:
 - Switching probability
 - Switching probability conditional on a positive trade flow

Discussion alternatives

イロト イポト イヨト イヨト

Data and stylized facts

Large transactions last longer

Table: Duration, switching probabilities, and the size of trade flows

	(1)	(2)	(3)	(4)	(5)	(6)
	duration	duration	duration	Log of 1/P(switch)	1/P(switch Trade)	duration
Mean exports (log)	0.050*** (0.000)	0.053*** (0.000)	0.059*** (0.000)	0.125*** (0.000)	0.047*** (0.000)	0.091*** (0.000)
Observations (Within) R ² Fixed effects	9,797,609 0.005 Country	9,797,609 0.005 Product	9,797,609 0.005 Product× country	9,797,609 0.046 Product × country	9,797,609 0.004 Product× country	25,132,896 0.014 Product× buver

イロト イロト イヨト イヨト 三日

Conceptual framework

Conceptual framework: switching

- A buyer purchases an input from a single supplier
- A buyer receives an offer with probability λ every period
- An offer is a quality-adjusted price P drawn from a distribution

$$H_P(p) = \mathbb{P}(P \leq p)$$

- If the current relationship is at price p:
 - \Rightarrow A firm decides to switch whenever $P < rac{p}{\gamma}$ where $\gamma > 1$
 - \Rightarrow Occurs with probability $\lambda H_P(p/\gamma)$
- γ captures the cost of switching across suppliers

イロト 不得下 イヨト イヨト ヨー のなの

Conceptual framework: duration

Under these conditions, the expected length of a buyer-seller relationship, conditional on its price is given by:

$$\mathbb{E}[\mathcal{T}|p] = \sum_{k=1}^{+\infty} k(1 - \lambda H_P(p/\gamma))^{k-1} \lambda H_P(p/\gamma) = \frac{1}{\lambda H_P(p/\gamma)}$$

 \Rightarrow The duration of a relationship is just the inverse of the probability of switching

(this holds true in continuous time)

イロト イポト イヨト イヨト

Conceptual framework

Toward an econometric model: Assumption 1

- We do not observed quality-adjusted prices but we observe sales
- Assumption 1: Demand for imports is iso-elastic (price-elasticity σ)
 - \Rightarrow duration in terms of sales (r) rather than unobserved prices

$$\mathbb{E}[\mathcal{T}|r] = \frac{1}{\lambda(1 - H_R(r\gamma^{\sigma-1}))}$$

イロト イポト イヨト イヨト

Conceptual framework

Toward an econometric model: Assumption 2

- We have to make assumptions regarding the distribution of prices
- Assumption 2: the distribution of prices is inverse-Pareto
- \Rightarrow transactions are distributed Pareto

$$H_R(r) = 1 - \left(\frac{r}{R_{min}}\right)^{-\frac{k}{\sigma-1}}$$

with R_{min} the scale parameter and k the shape parameter

Martin, Mejean, Parenti

Relationship-stickiness

2017 17/37

Toward an econometric model: Assumptions 1 and 2

Assumptions (1) and (2) deliver a log-linear relationship btw the expected (conditional) duration and relationship stickiness :

$$\mathbb{E}[\mathcal{T}|r] = \eta \left(\frac{r}{R_{min}}\right)^{\frac{k}{\sigma-1}}$$

 $\Rightarrow \eta \equiv \frac{\gamma^k}{\lambda} \text{ is our measure of relationship-stickiness}$ $\Rightarrow \text{ duration of a buyer-seller relationship is increasing in } \eta$ $\Rightarrow \text{ duration increases with the size of the transaction}$

Martin, Mejean, Parenti

Relationship-stickiness

2017 18/37

イロト 不得下 イヨト イヨト 二日

Conceptual framework

Discussion

- Departure from the competitive framework: Bertrand-type competition
 - \Rightarrow same switching probability as in the competitive model
 - \Rightarrow but the distribution of transactions changes
- Departure from the Pareto distribution of productivity
 - $\Rightarrow\,$ focus on the log-normal case
 - \Rightarrow in-progress

Method of moments

Moments: average duration within transaction-size deciles

$$\int_{d}^{d+1} \mathcal{T}(r)_{zpd} f(r) dr = \frac{\gamma_p{}^{k_p}}{\lambda_p} \log\left(\frac{10-d}{9-d}\right)$$

•
$$d = 0, 1, ..., 9$$
; $\frac{10-d}{9-d}$ increases with size

- Regress the log of averaged duration within a decile on
 - $\Rightarrow\,$ A function of the decile of the transaction
 - \Rightarrow 4,000+ product fixed effects (to back out $log\eta \equiv k_p log(\eta_p) log(\lambda_p))$
 - \Rightarrow country fixed effects (eg. heterog. in contract enforcement)
- The expected durations are measured with error (assumed iid)

イロト イポト イヨト イヨト 二日

Correlation with other measures

Measure	$Corr(\eta,.)$	OLS η
$1_{differentiated}$ (Rauch)	.06***	.01
Share of not homogen. products (Nunn)	.07**	.09
Upstreamness (Antras et al.)	.14***	.16***
Elasticity of subs. (Imbs & Mejean)	11***	30***
Product complexity (Haussman & Hidalgo)	.25***	.10***
Observations		3,877
R^2	-	.11

2017 21 / 37

- 2

イロト イポト イヨト イヨト

Results

Share of non-homog. products vs RS measure

Martin, Mejean, Parenti

Relationship-stickiness

2017 22 / 37

イロト イポト イヨト イヨト

Discussion

Tremendous dispersion in input specificity within 3-digit industries

Two examples:

1 Transport equipment

- most specific sector in Nunn's classification
- the sector includes bikes (likely not specific to the buyers)
- ... but also drive-axles or saddles for motorcycles
- 2 Chemicals: raw products but also customized ones
 - Imerys Refractory Minerals Glomel is the world leader in Andalusite production [...] Thanks to a customised range of products, Andalusite is also widely used in the technical ceramics and sand casting industries.

イロト イポト イヨト イヨト 二日

Application 1/5: Gravity

Application 1/5: Gravity for relationship-specific goods

- Gravity equations in trade: empirical regularity with theoretical underpinnings (Head & Mayer 2014)
- Some products "defy" gravity (eg. luxury goods cf. Martin & Mayneris 2015)
- What about high-RS products?
- \Rightarrow Almost no guidance in the literature
 - Atalay et al. (2017): firm boundaries are barriers to trade
 - Head & Ries (2008): monitoring costs and distance
 - Unit values increase with distance (Hummels and Skiba 2004)

2017 24 / 37

(日) (周) (日) (日) (日)

Application 1/5: Gravity

Application 1/5: Results

	(1)	(2)	(3)	(4)	(5)	(6)
	Value	UV	Value	UV	Value	UV
Distance (log)	-0.571***	0.467***	-0.699***	0.101***	-0.990***	0.087***
	(0.020)	(0.006)	(0.021)	(0.006)	(0.023)	(0.007)
RS	1.008***	-0.166***				
	(0.093)	(0.041)				
- $ imes$ dist	-0.151***	0.042***	-0.143***	0.020***	-0.113***	0.066***
	(0.012)	(0.005)	(0.012)	(0.004)	(0.010)	(0.005)
Upstreamness	1.008***	-0.166***	. ,	. ,	. ,	. ,
	(0.041)	(0.043)				
- $ imes$ dist	0.010**	-0.084***	0.021***	0.028***	-0.012*	0.047***
	(0.005)	(0.000)	(0.005)	(0.002)	(0.007)	(0.002)
Fixed effects	cou	ntry	country	/+sect	country	/×sect
Observations		5,703	5,782		5,473	,330
R-squared	0.164	0.178	0.285	0.654	0.578	0.770
Clustered (country) standard erro	rs in parenthese	eswith *, **, *	** denoting si	ignificance at th	1e

10, 5 and 1% levels.

Application 2/5: Institutional comparative advantage

Application 2/5: Institutional comparative advantage

- Nunn (2007): countries with good contract enforcement specialize in the production of goods for which relationship-specific investments are most important.
- Baseline specification:

 $log(export_{ic}) = \alpha_i + \alpha_c + specif_i \times legal_c + \epsilon_{ic}$

- Data: 4,339 hs6 sectors (*i*) 122 countries (*c*)
- (\neq Nunn, 182 sectors 122 countries)
- Dep. variables: exports (log), Balassa index, $\mathbf{1}_{\textit{Balassa}>1}$
- Control: Upstreamness (Costinot, Vogel & Wang, 2013: Specialization at various stages of production depends on country's probability of making mistakes)

Martin, Mejean, Parenti

Application 2/5: Institutional comparative advantage

Application 2/5: Results

	(1)	(2)	(3)	(4)	(5)	
		log(exports)		Balassa Index	$1_{Balassa>1}$	
Rule of law						
\times RS	0.349***		0.408***	0.286**	0.022***	
	(0.053)		(0.053)	(0.120)	(0.006)	
imes Nunn specif.		0.811***	0.978***	0.316*	0.027*	
		(0.100)	(0.117)	(0.168)	(0.015)	
\times Upstreamness			0.034	0.013	0.002	
			(0.021)	(0.024)	(0.002)	
Fixed effects	xed effects country(122) and sector(4,326)					
Observations	296,187	296,187	292,938	527,284	527,284	
R-squared	0.605	0.606	0.610	0.012	0.139	
Clustered (country) s	tandard error	s in parentheses	5 with *, **, '	*** denoting signific	ance at the	

10, 5 and 1% levels.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - 釣�(♡

Application 3/5: Intrafirm trade

Application 3/5: Intrafirm trade

- Theory: contracts and specific inputs (Antras 2003, Antras & Helpman 2004)
- Empiric: Bernard et al. (2010), Nunn & Trefler (2013), Corcos et al. (2010)
- \Rightarrow Product and country characteristics explain the share of intrafirm trade
- \Rightarrow What fraction of dispersion across products might be explained by our measure?

Application 3/5: Intrafirm trade

Application 3/5: Results

	(1)	(2)	(3)	(4)		
		Share of intra-firm				
	exp	exports				
RS (η)	0.177***	0.180***	0.140***	0.138***		
	(0.040)	(0.041)	(0.030)	(0.031)		
Nunn		0.406***		0.199***		
		(0.063)		(0.046)		
Upstreamness		0.060***		0.015		
		(0.016)		(0.011)		
Elasticity (σ)		0.002		-0.005		
		(0.006)		(0.004)		
Observations	378	378	378	378		
R-squared	0.058	0.166	0.071	0.119		

cance at the 10, 5 and 1% levels.

Martin, Mejean, Parenti

Relationship-stickiness

2017 29/37

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Application 4/5: Trade and business cycle comovement

Application 4/5: Trade and BCC

- Frankel & Rose (1998) di Giovanni & Levchenko (2010): Countries that trade more together comove more. Role of international IO linkages as a driver of comovements
- Hypothesis: Propagation of shocks in production networks should be especially strong for high input-specific goods (Barrot & Sauvagnat, 2016)
- Baseline specification (di Giovanni & Levchenko, 2010):

$$ho_{kl}^{ij} = lpha + eta \ln \mathit{Trade}_{kl}^{ij} + \mathbf{u} + arepsilon_{kl}^{ij}$$

- ij a pair of countries, kl a pair of sectors, \mathbf{u} a set of fixed effects
- ρ_{kl}^{ij} the correlation between value added in sector k of country i and sector l of country j
- $Trade_{kl}^{ij}$ a measure of the intensity of bilateral trade in both sectors:

$$Trade_{kl}^{ij} = \frac{1}{T} \sum_{t} \frac{X_{kt}^{ij} + X_{lt}^{ji}}{X_{kt}^{i} + X_{lt}^{j}}$$

Martin, Mejean, Parenti

Relationship-stickiness

2017 30 / 37

Application 4/5: Trade and business cycle comovement

Trade-BCC with relationship-specific trade

• Augmented specifications:

• Data: UNIDO + ComTrade

- 3

イロト 不得下 イヨト イヨト

Application 4/5: Trade and business cycle comovement

Results

		Dependent var: $ ho_{kl}^{ij}$					
	(1)	(2)	(3)	(4)	(5)		
			alt	ter.			
log(Trade ^{ij})	0.00150***	0.00147***	0.00148***	0.00108***			
	(0.000245)	(0.000246)	(0.000246)	(0.000221)			
RS ^{ij}				2.060***			
N					(0.351)		
$log(Trade_{ij}^{ij}) \times RS_{ij}^{ij}$			0.00212**	0.00150*			
			(0.000807)	0.000735)			
TradeH ^{ij}				· · · ·	2.060***		
KI					(0.351)		
TradeL ^{ij}					0.913***		
KI					(0.208)		
Observations	F00 027	F02 227	F00 027	502 227	E02 227		
Observations p ²	502,257	502,257	502,257	502,257	502,257		
κ _{tot}	0.29	0.29	0.29	0.29	0.29		
$\alpha_i \times \alpha_j + \alpha_k \times \alpha_l$	yes	yes	yes	yes	yes		

Robust t statistics in parentheses with *, **, *** denoting significance at the 10, 5 and 1% levels. α_i and α_i are the country fixed effects, α_k and α_l are the sector fixed effects

Martin, Meiean, Parenti

イロト イロト イヨト イヨト - 31 2017

32 / 37

Application 5/5: Uncertainty

Uncertainty and the formation of trade relationships

- Bloom (2009) and subsequent lit.: Impact of policy uncertainty on the economic activity, through the decision to hire/invest/enter a market ⇒ Trade: Pierce & Schott'16, Handley & Limao'16, Novy & Taylor'14
- Hypothesis: Impact of uncertainty on the probability to form a new trade relationship, stronger for trade involving specific inputs
- Baseline specification:

#newrelations_{pdt} = α Uncertainty_{dt} + β RS_p + γ RS_p × Uncert_{dt} + ϵ_{pdt}

- Data:
 - Dep. Variable: new interaction btw a French seller and a foreign buyer
 - RHS variable: Policy uncertainty from Baker, Bloom & Davis (2016)
 - Poisson regression, with different sets of fixed effects (country trend, seasonality)

Martin, Mejean, Parenti

Relationship-stickiness

2017 33 / 37

Application 5/5: Uncertainty

Policy uncertainty, 2000-2015 (Baker, Bloom, Davis 2016)

More on cross-country correlations

Martin, Mejean, Parenti

Relationship-stickiness

2017 34 / 37

Application 5/5: Uncertainty

Application 5/5: Results

	(1)	(2)	(3)	(4)	(5)	
Dep. var:		<i># new trade relationships</i>				
Uncertainty	-0.05***	-0.06***		-0.09***		
	(0.005)	(0.005)		(0.007)		
- imes RS		-0.06***	-0.01***	-0.07***	-0.01***	
		(0.010)	(0.002)	(0.014)	(0.003)	
Fixed effects:						
Country	\checkmark	\checkmark		\checkmark		
Product-month	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Country × Time			\checkmark		\checkmark	
Method	Poisson	Poisson	LPM	Poisson	LPM	
Threshold	1 s.d.	1 s.d.	1 s.d.	1.64 s.d.	1.64 s.d.	
Obs.			1,986,261			

Martin, Mejean, Parenti

Relationship-stickiness

2017 35 / 37

◆□ ▶ ◆酉 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ● のへで

Conclusion

- New method to reveal relationship specificity using transaction data
- Easy to implement (and easy to improve)
- Easy to use : applied to 5 key issues in international trade
- RS dataset available to other researchers soon
- Discussion: strengths and limits of the RS measure

イロト イロト イヨト イヨト 三日

Differences across measures

	Mean duration	P(switch)	P(switch trade>0)
S-S-S-S'-S'-S'	3 months	1/3	1/3
S-S-S- <mark>x</mark> -S'-S'	2.5 months	1/3	2/5
S-x-S-S'-x-S'	3 months	1/3	1/2
S- x -S- x -S'-S'	2.5 months	1/3	1/2

- All three measures are the same if buyers trade every month
- Duration and switching probability conditional on a positive trade flow are similar if vacancies only occur at the time of switching
- Duration and unconditional switching probability are similar if vacancies only take place within a firm-to-firm relationship
- The three measures differ in the other cases

 \Rightarrow In general, $1/P(switch|Trade) \leq Mean \ duration \leq 1/P(switch)$

Martin, Mejean, Parenti

Relationship-stickiness

2017 36 / 37

Conclusion

Duration of French-EU buyers relationships

Mean Median P25 P75 Mean duration 24 13 3 34 P(switch) 0.115 0.053 0.024 0.125 P(switch|Trade) 0.355 0.333 0.143 0.500 Proba Recall 0.054 0.000 0.000 0.000 Frequency of transactions 0.358 0.246 0.120 0.500

Table: Descriptive statistics on French- EU buyers relationships

Back to the presentation

イロト イポト イヨト イヨト

Correlation across measures

Table: Correlation of estimated RS measures

	Mean	1/	1/
	duration	P(switch)	P(switch Trade)
Mean duration	1.000		
P(switch) ⁻¹	.828	1.000	
$P(switch Trade)^{-1}$.793	.602	1.000
	Measures	accounting f	for censoring
Duration _{cens}	.922		
$P(switch)_{cens}^{-1}$.883	
$P(switch Trade)_{cens}^{-1}$.899

Back to the presentation

Martin, Mejean, Parenti

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ ○ ○ ○

Conclusion

Policy uncertainty, 2000-2015

Table: Correlation - uncertainty

	DE	IT	UK	ES
Germany	1,00			
ltaly	0,52	1,00		
UK	0,67	0,55	1,00	
Spain	0,54	0,49	0,45	1,00

▶ Back to the slides

2017 37/37

イロト イロト イヨト イヨト 三日