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Abstract

This paper uses smartphone app location data from three African countries over a one-year

period to characterize patterns of high-frequency mobility. The data reveal the types of lo-

cations that people visit and the frequency with which they make trips. Our data point

to considerable mobility within the sample. The average smartphone user in our data

ventures more than 10 km from home on 12-15% of the days when they are observed.

On average, when we observe them away from home, our users are typically 35-50 km

from home. The granular nature of our data allows us to obtain insights into the specific

destinations where people are observed when they are away from home. These include

locations associated with shops and markets, government offices, and places offering a

range of goods, services, and recreational venues. Big cities seem to be particularly impor-

tant destinations, perhaps reflecting the range of amenities that they offer to visitors. We

develop a conceptual framework that characterizes the role of visits for individuals and

provides a number of testable predictions that are consistent with the movement patterns

that we observe in the data. Although our sample of smartphone users is not representative

of national populations, their mobility patterns offer novel insights into spatial frictions

and the geographic patterns of economic activity.
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1. Introduction

Understanding human mobility patterns in low-income contexts has previously been limited

by the lack of data. Census data and standard household surveys seek to capture migration

flows between survey waves, but these data sources offer little information about move-

ments that do not involve changes in an individual’s home location. In a number of recent

studies, survey instruments have been designed to measure temporary and seasonal migra-

tion flows in low-income countries (Bryan et al., 2014; Lagakos et al., 2022; Imbert and

Papp, 2020). For high-income economies, a few surveys provide detailed commuting data

(e.g., the American Community Survey), but these normally miss non-work trips. More-

over, such surveys are not available for most low-income countries. Newer sources of “big

data” have allowed researchers to construct more fine-grained measures to characterize

migration and commuting behaviors for low-income economies (Blumenstock et al., 2019;

Kreindler and Miyauchi, 2021). Migration inferred from such data is informative about

human mobility over longer time periods, and commuting data offer insights into a spe-

cific type of daily travel. We know little, however, about human mobility within developing

countries over other time scales.

In this paper, we bring new data to the study of a type of mobility that has previously been

difficult to capture. Specifically, we examine what might be characterized as “visits”: the

movement of people from their home locations to other locations, not necessarily for daily

work. By using a new source of data and defining a novel set of metrics to measure phenom-

ena that were previously difficult to characterize, we follow examples such as Henderson

et al. (2012) or Akbar et al. (2018). We find in our data that “visits” are in fact an impor-

tant form of mobility. In a theoretical sense, trips between rural and urban locations (or

between smaller cities and larger ones) may allow people to benefit from the amenities of

large cities without migration. With short visits to cities, people from rural areas and small

towns may be able to manage administrative and legal matters, enjoy consumption goods

that are unavailable elsewhere, and perhaps also to purchase or consume market goods and

services without having to pay costs to traders and middlemen. We know anecdotally that

this kind of mobility is both important and ubiquitous; anyone who spends time at a bus
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station in Accra or Arusha can see first-hand the numbers of people in motion. But we have

hitherto had little ability to quantify these flows or to understand their patterns.

To measure mobility, we use newly available, fine-grained, anonymized data on smartphone

locations. Each observation in our data reflects an instance when a user’s phone connects

to the internet to use a particular app. For each such use, we observe the GPS location

and the precise time. We use the data to map and categorize the movements of people

and the connectedness of locations. Unique to our study is the scale at which we can study

the phenomenon of short-term population movements. Our raw data covers more than one

million smartphone devices over an entire year across three large African countries: Nigeria,

Kenya, and Tanzania.1 We are therefore able to present novel evidence on high-frequency

mobility for large numbers of people, and at high spatial and temporal resolution. We show

that this type of mobility is both substantial and prevalent.

The paper makes three main contributions. First, since we study a new type of mobility, we

start by defining a novel set of metrics for characterizing mobility across space related to

frequency, spatial extent, and destination characteristics. Our metrics are parsimonious and

easily interpretable across different contexts, yet paint a rich picture of the extent of spatial

mobility and the interconnectedness of locations. Second, we analyze these measures to

provide insights into the patterns of human mobility within the three countries where our

data originate. We can ask how frequently residents of a particular location pass through

a given city or market centre; or how the composition of visitors to the capital differs from

visitors to secondary cities. Within cities, we can examine the types of destinations where

visitors are seen. Third, we develop a conceptual framework in which individuals decide

what locations to visit. The framework delivers a number of testable propositions that, for

example, relate the duration of visits or the distance travelled. To our knowledge, this is

also one of the first papers using smartphone app location data in the context of low-income

countries.

To provide a first glance at our data, Figure 1 shows visits from every spatial grid cell outside

the city perimeter to any city of more than 50,000 residents in each of our study countries.

The brightness of lines reflects the counts of distinct visits. It is immediately obvious that

1In the remainder of the paper we will refer to a device as a user. We recognize that this is an inexact
equivalence: some users possess more than one device, and some devices are shared by multiple users. We
address these issues in detail in Section 3.
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the largest cities in each of these countries draw in visitors from all over the populated areas

of these countries, suggesting a strong connectedness of cities with their hinterlands. But it

is also striking that there are many other lines linking secondary cities and other locations

to one another.Our paper digs deeply into these connections and suggests a need to think in

more nuanced ways about spatial frictions and patterns of mobility. Capital cities of course

Figure 1: Mobility flows to cities.

(a) Kenya (b) Nigeria (c) Tanzania

Note: The brightness of lines reflects the counts of distinct visits to any city of more than 50,000,
from every spatial grid cell outside the city perimeter.

attract disproportionate flows; but political centrality by itself is less of a driver than urban

primacy; this is well illustrated in Tanzania’s map, where Dar es Salaam (on the east coast)

acts a clear magnet. By contrast, the capital, Dodoma (located towards the center of the

country), is little different from other secondary cities in terms of incoming visitors. Our

metrics allow us to quantify such patterns and to investigate the connectedness of locations

at national scales.

The strength of our approach is that we are able to make clear and objective observations

that match people to the locations they have visited, covering a large sample over a lengthy

time period, without relying on recall data. These metrics can be easily applied in other

contexts when similar data are available. Although the smartphone users whom we ob-

serve are in no way representative of the entire population, we can characterize this set of

people with reasonable accuracy. We interpret our results as broadly representative of mo-

bility within the populations of smartphone users in each of our countries, and we develop

a number of methods that allow us to characterize in great detail the similarities and dif-

ferences that our sample shares with the general population of each of the three countries.

Smartphone owners accounted for a significant fraction of the urban population in each of
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our three countries at the time period under study, ranging from 23 percent of the urban

population in Nigeria to 51 percent in Kenya.2 Given the virtual absence of data on this

type of mobility for entire populations, we argue that our results represent a useful contri-

bution. They provide insights into high-frequency mobility within a substantial fraction of

the overall population – and a subset that is worthwhile and informative to study. While not

the primary objective of this paper, the methods we develop to examine and characterize

selection could easily be applied to similar digital trace data.

Our analysis finds striking evidence of a high degree of mobility within our samples for

each of these three African countries. Our smartphone users are highly mobile. Users are

seen more than 10km away from home on about one-sixth of the days on which they are ob-

served. Residents from more sparsely populated areas are more frequently away from home

than city center residents, and our users with rural home locations venture farther when

they leave home. Spatial transition matrices show that towns and many villages in these

countries appear to receive visits from urban dwellers, and in turn these villages generate

travellers who venture to larger towns and cities. The networks of connectivity between

different geographies are strong. This challenges, for instance, the notion that villages and

towns in rural areas are effectively isolated; at least some (relatively prosperous) residents

are maintaining regular connections to more densely populated locales.

Beyond these qualitative findings, we show that large cities exert a disproportionate influ-

ence: Nairobi, Lagos, and Dar es Salaam are powerful magnetic forces that pull in visitors

from every corner of their countries, while secondary cities appear to be substitutes for

each other. Finally, we show that high-frequency mobility follows specific patterns consis-

tent with the propositions from our conceptual framework: first, the number of visits per

person made from a smaller settlement to a larger one will exceed the number made in

the opposite direction. Second, the fraction of days users spend visiting a city follows a

gravity-style equation. Third, given a choice between visiting two equidistant locations,

individuals more frequently visit the more populous destination.

This paper contributes to three main strands in the literature. First, our primary contribu-

tion is methodological, in proposing key metrics that allow us to characterize the extent of

high-frequency mobility. Digital trace data, similar to ours, have been used, for example,

2If “feature phones” are included (i.e., phones that have some limited ability to connect to particular
apps), the numbers range from 36 percent of urban users in Tanzania to 63 percent in Kenya.
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to study the length of time that individuals spend with their families for Thanksgiving in

the US (Chen and Rohla, 2018), to construct a measure of experienced segregation (Athey

et al., 2021), to study the effect of chance meetings on knowledge spillovers in the Silicon

Valley (Atkin et al., 2020), to measure the effectiveness of social distancing (Mongey et al.,

2021), social interactions (Couture et al., 2020) and the importance of travel along trip

chains (Miyauchi et al., 2022). We add to this literature by focusing on three countries in

sub-Saharan Africa and by looking at patterns of mobility across cities.

Second, we relate to a literature using quantitative spatial models (Monte et al., 2018;

Owens et al., 2020; Ahlfeldt et al., 2015; Dingel and Tintelnot, 2021; Kreindler and Miyauchi,

2021). While our model focuses on visits, our conceptual framework also predicts a gravity-

style equation, in flavor similar to the familiar gravity equations employed in this literature.

Third, our findings relate to a growing literature in economics that documents large gaps

in nominal wages and productivity across sectors and in developing countries (Gollin et al.,

2014). There are similarly large gaps in living standards across space, with people in

sparsely populated rural locations consistently worse off than those in dense urban set-

tlements (Gollin et al., 2021). The persistence of these gaps raises the possibility that sig-

nificant frictions and market imperfections limit the movements of people and information,

leading to spatial and sectoral misallocation (Bryan and Morten, 2019; Brooks and Dono-

van, 2020; Caselli and Coleman, 2001; Eckert and Peters, 2018; Lagakos et al., 2018). In

contexts where spatial frictions are high, the allocation of factors across firms will tend to

result in gaps in marginal products. Similarly, spatial frictions may lead to allocations such

that marginal utilities are not equalized across consumers, and utility may not be equalized

across people living in different locations. These static effects may also lead to dynamic

impacts, as frictions move the economy away from a theoretically efficient benchmark.3 By

examining the frequency with which individuals move across space – from rural areas to

towns and villages, or between cities – we inform this debate by assessing the potential

salience of different frictions. For instance, a world in which people travel frequently be-

3The importance of within-country spatial frictions in the movement of goods has been documented in
recent work (e.g., Arkolakis et al. (2012); Costinot and Donaldson (2016); Atkin and Donaldson (2015);
Donaldson and Hornbeck (2016); Donaldson (2018); Allen and Arkolakis (2014)). This emerging literature
has pointed out that spatial frictions have implications for patterns of specialization and exchange. An addi-
tional literature has documented the importance of spatial frictions as they relate to the flow of information
(e.g., Aker (2010); Jensen (2007)). Allen (2014) suggests that information frictions can compound spatial
frictions.
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tween cities, or between rural and urban locations, is unlikely to be one in which the costs

of mobility are prohibitive.

Beyond the implications for spatial frictions, our analysis points to a number of interesting

features of the data. First, the widespread prevalence of non-residents visiting cities sug-

gests that urban areas generate benefits for a much broader set of people than their own

residents and nearby commuters. Our data is consistent with a world in which people travel

to cities from substantial distances – and with some frequency – to enjoy the benefits that

cities provide. Second, we observe that ’visits’ allow for some rural people (and the inhabi-

tants of towns and small cities) to break down the rural-urban binary. Put differently, ’visits’

allow people to achieve partial urbanization. In this sense, ’visiting’ cities may substitute

for migration, in the same way that rental markets allow people to solve the problems of

lumpy capital purchases. The feasibility and (apparent) affordability of trips may represent

an additional factor helping to explain the low rates of rural-urban migration, even in con-

texts where there are large differences in wages, productivity and living standards across

space.4 What is unambiguously clear in the data is the ubiquity of visits; this suggests that

we should be cautious in treating rural and urban areas as entirely distinct; our data sug-

gest that instead, they are connected by non-trivial flows of people. With the movements

of people, it seems reasonable to imagine that there may also be corresponding flows of

goods and information.

It would be interesting to compare what we observe in our three countries with a benchmark

of high-frequency mobility patterns observed in higher-income countries where spatial fric-

tions are less prevalent. Unfortunately, smartphone penetration rates across space within

countries - and therefore the observed sample - would also be very different in these coun-

tries, making comparisons difficult to interpret. We therefore focus on analysing patterns

within the three study countries.

This paper is structured as follows. Section 2 discusses the smartphone app data we use

and how we define home locations. Section 3 focuses on sample selection and characterizes

the sample. Section 4 presents our mobility indicators. Section 5 sketches our conceptual

framework. Section 6 examines to what extent the data is consistent with the propositions

coming out of our model. Section 7 concludes.

4There are of course many alternative interpretations of the frequency of trips.
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2. Smartphone app data

This paper draws primarily on smartphone app location data for three African countries:

Kenya, Nigeria and Tanzania. We selected these countries based on data availability and on

having a sufficiently high number of users in the sample. This section summarizes the main

ways in which we process the raw data; for more detail, we refer the interested reader to

Appendix A.

Each observation in our data set (referred to hereafter as a "ping") represents an instance

where a smartphone accesses the internet via a set of apps. Pings are sourced from a large

number of apps that (with the user’s permission) access location data. These apps include

standard social, navigation, information and other apps, but we do not know precisely

which apps, and we cannot associate specific pings with specific apps. Each ping comes from

a device – i.e., a particular smartphone. For each ping we know the device identifier (i.e., a

particular phone, rather than a SIM card), a timestamp and longitude/latitude coordinates

of the current position, measured to an accuracy of approximately 10 meters. Each country

dataset covers a period of one year between 2016 and 2018.5

In the remainder of the paper we refer to a device as a user, subject to the caveats already

mentioned in Footnote 1 and discussed in further detail below. In this section we start by

discussing how we assign home locations to users and outline how we identify and deal

with irregularities in the data.

2.1. Home locations

We use two criteria to define home locations. First, we identify the modal 0.01-degree

cell (≈ 1.1km at the equator) in which the user is seen at night (between 7pm and 7am,

local time). Second, we consider two additional restrictions: (a) that a user is observed

for a minimum of 10 nights; and (b) that the user is at the inferred home location for at

least 50% of the total nights when that user is observed anywhere. These two restrictions

eliminate cases where the user is seen infrequently at night, or is seen frequently but at

multiple locations. Given the central role home location plays in our analysis, we define

our core sample – which we call the “high-confidence” sample – as users that satisfy both

5The precise time frame is 2016-12-01 to 2017-12-01 in Kenya and 2017-04-01 to 2018-04-01 in Nigeria
and Tanzania. Note that these data come from before the period of the Covid-19 pandemic and do not reflect
any of the subsequent lockdown restrictions.
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criteria. Unless specified otherwise, we use our high-confidence sample for our analysis.6

We then carry out data cleaning procedures described in Appendix A.2.

Table 1 shows the number of users and pings per user for our base sample of users and

our high-confidence sample. Columns (1) and (2) show the number of users and average

Table 1: Sample and pings per user

All High confidence
Users Pings ratio Users Pings ratio
(1) (2) (3) (4)

Kenya 195,630 593 18,545 4,864
Nigeria 659,407 304 78,750 1,721
Tanzania 237,123 457 22,994 2,132

TOTAL 1,092,160 389 120,289 2,284

Note: Columns (1) and (2) show the total number of users per country and average pings per user.
Columns (3) and (4) only use high-confidence users (users who are observed for a minimum of 10
nights and who are at the inferred home location for at least 50% of the total observed nights.)

pings per user over the entire year, for those users who are observed at least once at night.

The average is computed by summing over all pings and dividing by the number of users;

for this sample we have on average slightly more than one ping per day per user. Columns

(3) and (4) apply the two restrictions to obtain our high-confidence sample. This yields

a sample of just over 120,000 devices across the three countries, with an average of over

2,000 pings observed per user. Users in the high-confidence dataset are therefore seen on

average 6 times per day, compared to users in the complete dataset who are seen on average

slightly more than once per day.7

Table 2 summarizes user-level temporal statistics for our high-confidence users considering

three different measures. The first statistic that we consider is the duration over which

we observe a particular user, defined as the number of days between the first and the last

observation of that user. Second, we count the number of distinct days on which we see

a particular user. The third statistic is the mean number of pings per day per user. The

mean number of pings per day is defined as the total number of pings for a user divided by

the number of distinct days she is seen.8 These statistics are roughly similar for the three

6The distributions of home locations and patterns of mobility are very similar whether we use the base
data or low-, medium-, and high-confidence samples.

7As is common with these types of data, there is a large variation in the number of pings across users, with
about 59% of users having at most 20 pings in the initial sample. Our two conditions defining high-confidence
users reduce the fraction of users with at most 20 pings to 0.3%.

8This differs from the pings ratio in Table 1 which simply summed over all pings in the data across all
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Table 2: User-level temporal statistics by country

Variable Mean Median Min Max
Length of obs. (in days) 102.2 74.5 8.7 365.0

Kenya Days seen 39.5 30.0 8.0 352.0
Mean pings per day 99.1 9.0 1.0 20,665.4

Length of obs. (in days) 101.1 82.1 8.6 365.0
Nigeria Days seen 40.6 29.0 8.0 346.0

Mean pings per day 40.2 12.9 1.0 9,585.8
Length of obs. (in days) 95.1 70.7 8.6 364.9

Tanzania Days seen 38.9 28.0 7.0 349.0
Mean pings per day 51.6 10.7 1.0 14,765.6

Length of obs. (in days) 100.1 77.2 8.6 365.0
TOTAL Days seen 40.1 29.0 7.0 352.0

Mean pings per day 51.4 11.8 1.0 20,665.4

Note: This table shows the duration over which we observe a user, the number of distinct days we
observe a user, and mean pings per day, defined as the ratio of the total number of pings for a user
divided by the number of distinct days she is seen.

countries. We see users on average over a span of about 100 days, on about 40 distinct

days, and they have between 40 and 100 pings per day on average.9 The relatively short

time frame over which we observe individuals suggests that while the data is informative

about the overall mobility of the population, it is not ideal for longer-term individual-level

analysis, such as measuring the extent of seasonal or permanent migration. 10

Similar to home locations, in Appendix Section A.3 we have defined work locations as the

modal 0.01-degree cell in which a user is observed between 9am and 6pm on weekdays,

again imposing two restrictions: that (a) the user is observed for a minimum of 8 distinct

weekdays and (b) is seen at the inferred work location for at least 50% of the total weekdays.

We find that home and work locations are found within the same 0.01-degree cells for 80%

of users, consistent with high rates of self-employment and short-distance commuting. We

interpret this to mean that relatively few of the trips observed in our data are associated

with daily commuting between home and work.

users and divided by the number of users.
9The minimum number of days is less than 10 as some users are seen on 10 nights but have pings on

fewer than 10 days.
10These are issues explored in Bryan et al. (2014), Imbert and Papp (2020), Lagakos et al. (2018) or

Blumenstock et al. (2019) using call detail records data.
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3. Selection

The key selection concern when using smartphone app location data is that we only capture

individuals who own a smartphone. A further restriction affecting selection into our sample

is that individuals require data credit on their phones, similar to requiring phone credit to

make calls or send texts. On the other hand, as app usage is increasing through the use of

messaging services (e.g., Facebook Messenger or WhatsApp), replacing “traditional” calling

and texting, we are more likely to capture locations of individuals engaging in this kind of

activity. Further, we are more likely to capture passive use of a mobile phone if a device

connects to an app without the deliberate action of the holder of the device. This would

make location detection more representative, in some sense, than relying on call and text

events only which require a deliberate action. In terms of characteristics of the selected

sample, we expect this to bias our sample towards richer, more educated and younger

individuals.

Given these general concerns about selection, we seek to understand how our population

of users compares to the broader populations of these three countries. We proceed in three

steps. First, we link users’ locations with geo-coded population density data from WorldPop

to understand how the home locations of users relate to the overall spatial distribution of

population. Second, we draw on data from other nationally representative surveys – specif-

ically, the ICT Access and Usage Surveys 2017-2018 – to examine differences between in-

dividuals who own a smartphone and those who do not. To the extent that our population

of smartphone app users is typical of all smartphone owners, these survey data will tell us

something about how our users compare to the broader national populations of their coun-

tries. Third, to measure how representative our users are, in terms of their home locations,

we develop a methodology to match home locations with nationally representative micro-

data from the Demographic and Health Surveys (DHS). This allows us to say something

about whether the locations where our users live are typical or atypical.

Figure 2 shows the distribution of home locations in the left panel and compares it with the

population distribution in the right panel. Darker values indicate a higher number of users.

Unsurprisingly, we observe a higher number of users in the main cities. However, the figure

shows that coverage of users is broadly national, with users residing in fairly distant places

as well as in the densest cities. In fact, we have users in all but three of the 115 regional
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Figure 2: Distribution of home locations and population.

Note: This figure shows the distribution of home locations of users at a 10km resolution (on the left)
and the distribution of the population at a 1km resolution (on the right).

capitals in the three countries we study. When looking within the three capital cities we

find again that our users reside in locations spread out across these cities rather than being

concentrated in a few rich neighborhoods.

To examine how representative home locations of our users are for different levels of pop-

ulation density, we extract the population density values at users’ home locations using

WorldPop population grids and we then infer the distribution of users across population

density bins. The distribution of users is largely skewed to the right with around 70 percent
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of users falling in the two densest bins (see Figure 3).11 We compute three further metrics

Figure 3: Users by population density decile.

(a) Kenya (b) Nigeria (c) Tanzania

Note: This figure shows the distribution of users across population density deciles based on national
population data so that each decile contains one tenth of the population (rather than one tenth
of grid-cells).Appendix Figure E.1 shows the same figure based on Landscan measures of density
instead of WorldPop and also shows the sensitivity to our definition of the high-confidence sample.

to measure the representativeness of our users across different levels of population density:

first, we take all 10-km pixels in a country and regress the number of users in a pixel on

population of the corresponding pixel. We find that the R-squared ranges between 0.36 in

Kenya to 0.81 in Tanzania, depending on the source of the population density estimates.

Second, we compare the rank in terms of the total number of users at the first administra-

tive level in our three countries with the rank of the population. The bivariate correlation

coefficients range between 0.29 in Nigeria and 0.7 in Tanzania. Next, we compare the frac-

tion of users located in cities of at least 200,000 people with the corresponding fraction of

the population living in those cities.12 In Nigeria, 86.1% of our users are found in cities of

200,000 people, whereas these are host to only 20.5% of the population. Similar results

are observed in Kenya and Tanzania where we find 75.9% and 68% of users in major cities

that host 15.9% and 16.7% of the population respectively, which is indicative of an urban

selection pattern. The urban tilt of our sample is unsurprising; we expect that smartphone

users will be concentrated in cities.
11To be specific, we divide each country into gridcells and assign each gridcell an absolute population

density based on WorldPop or other data. Using the national population data, we can divide the entire
population into equal-sized bins based on the population density in which they live. This gives rise to a set
of gridcells associated with each density decile. We can then identify each of our users with the population
density and/or the density bin of their home location; e.g., we can speak of a user whose home location is in
the third density decile.

12Our approach to defining urban peripheries is described in Appendix Section B. Using 2018 as our base
year, we identify 6, 39, and 10 cities of at least 200,000 people in Kenya, Nigeria, and Tanzania respectively.
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To understand how this pattern is driven by differential device ownership rates across urban

and rural areas, we use data from the ICT Access and Usage Survey 2017-2018 for Nigeria,

Kenya and Tanzania. These surveys are nationally representative and have detailed ques-

tions on mobile phone ownership and usage, as well as individual and household character-

istics. Overall, between 19 and 43 percent of the population have either a feature phone or

a smartphone in our three countries.13 Figure 4 shows ownership rates for different types

of mobile phones, comparing rural and urban locations. Compared to rural areas, respon-

Figure 4: Device ownership by location.
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Note: This figure shows device ownership rates for rural and urban respondents. All figures use the
sample weights provided.

dents in urban areas are unsurprisingly more likely to own a mobile phone, and the phone

is likely to be more sophisticated. The figure shows that in all three countries, smartphone

ownership is highest in urban areas, with rates between 23 and 51 percent. If we include

feature phones, this increases the rate to between 50 and 60 percent. The proportion of

individuals with a basic mobile phone ranges between 21 and 38 percent. Across the rural
13A "feature phone" is defined as one that has a small screen and some rudimentary internet access, but

button-based data entry rather than touch screen. It is more complex than a "basic phone," which can only
carry out simple calling and texting functions.
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areas of our three countries, smartphone and feature phone ownership is highest in Nigeria,

at 31 percent penetration, and lowest in Tanzania, with 11 percent. Figures C.1-C.4 in the

Appendix examine ownership rates by gender, and explore how owners of different devices

differ in terms of income, education, age and main source of income. In all three countries,

women are less likely than men to own a mobile phone. While basic phone ownership

rates are roughly equal between men and women, fewer women own a feature phone or

a smartphone; still, smartphone ownership rates of women are between 11-20 percent in

our three countries. Unsurprisingly, respondents with no mobile phones tend to have the

lowest incomes and owners of smartphones tend to have the highest incomes. However,

Figures C.2 - C.4 highlight that these distributions are not distinct. Appendix Table C.1

shows the proportion of smartphone owners across different categories and compares this

to the sample averages. The Table suggests that smartphone users are not just from one

occupation (e.g., traders) but are represented across different types of economic activities.

Finally, the survey also asks respondents about their usage of a range of apps, including

social networking apps and news, weather, trading, business, health and dating apps. Fig-

ure C.5 shows that between 76 and 83 percent of smartphone owners report using an app

weekly on their phones, and more than 55 percent use these apps daily, suggesting that

selection due to differential usage patterns is likely less of a concern.

In a third step, we characterize the home locations of our users by drawing on available

data from Demographic and Health Surveys (DHS). The key challenges are how to link a

relatively small number of DHS survey clusters (the total number of clusters ranges from

608 in Tanzania to 1,594 in Kenya) to a large number of home locations for our users, spread

across the entire geography of our three countries.14 For our analysis, we aim to match each

user’s home location to a nearby DHS cluster that might be considered comparable. We then

compare these matched DHS clusters to the full DHS sample. Appendix D provides details

on how we link home locations of users with DHS clusters. Following this procedure, we are

able to link 70% of our users in the high-confidence sample with at least one DHS cluster.

This matching exercise allows us to see whether the home locations of our users are atyp-

ical, relative to the nationally representative sampling frames that have yielded the DHS

clusters. In other words, if we look at the set of DHS clusters where we find our users, we

14Adding to the challenge is that the published locations for the DHS clusters are randomly displaced by a
small amount in an effort to ensure data confidentiality (Perez-Heydrich et al., 2013).
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can ask whether this matched DHS sample looks statistically similar to the overall ("raw")

set of DHS clusters. We carry out this analysis by conducting t-tests for equality of means

between the raw DHS and matched DHS samples on a range of directly quantifiable house-

hold characteristics, such as whether the household has a constructed floor, walls, roof,

overcrowding and access to public services such as electricity and tap piped water. More-

over, we produce results for rural and urban sub-samples separately to account for both

the prevalence of urban users in our sample and the lower matching rate in low density

areas, which together may lead to results being mainly driven by the urban component of

the sample. We produce t-tests comparing our two weighted data sets, with bootstrapped

standard errors robust to heteroskedasticity. The survey weights are used for the reference

DHS sample, while those of the matched DHS sample correspond to the number of users

each cluster is paired with.

Appendix Tables E.1-E.3 show that we find statistically significant differences between the

matched clusters and the raw DHS clusters. Our users live in locations that are not nation-

ally representative. In particular, the DHS data show that individuals residing in matched

clusters have smaller household size than that found in the nationally representative DHS

sample. The matched clusters also have younger household heads with higher education

levels, and better access to services and housing characteristics. Most of the differences

are statistically significant. What we find, however, is that the absolute levels do not dif-

fer by large amounts; the differences between matched clusters and the raw DHS data are

quantitatively small, especially within the rural and the urban samples.15

Our takeaway message from this analysis is that our population of users resides in more

densely populated locations and is likely to be richer, more educated and younger. Within

urban locations, smartphone users represent a significant fraction of the population. Given

the selection biases here, we must be extremely cautious in generalizations about aggregate

behavior. However, given the lack of data on the kind of mobility that we study in this paper,

we feel that it is still worthwhile to study the mobility characteristics of our sample. While

our samples are not nationally representative, they represent non-trivial sections of the

population, and we can observe their behavior in rich detail.

To conclude this section of the paper, we return to the potential biases that we may have

15In almost two-thirds of rural and urban comparisons for these three categories of variables, the differ-
ences between the matched and unmatched clusters are less than 10 percent.
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introduced by equating "devices" with "users". We also consider other potential challenges

in working with our ping data. We acknowledge that distinct users may use the same device,

and individual users might have multiple devices. Unfortunately we do not have data on

the extent to which smartphones are shared among contacts. From the ICT Access and

Usage Survey we know that between 20 and 35 percent who stated that they do not own

a mobile phone say that they nevertheless used a mobile phone in the past three months.

It is reasonable to assume that device sharing is likely to occur within households. If so,

it would not affect the home locations we determined for our users, nor would it alter the

characteristics of home locations we discussed.

Individuals could also have multiple phones or SIM cards. The latter problem is not a

significant concern for us. Our data observe devices, rather than SIM cards; even when the

SIM card is swapped, the device identifier remains the same, so our smartphone app data

are unaffected. There is some reason for us to be concerned about users who own multiple

devices. This would affect our results in the opposite way of device sharing, such that

the movement data of these two-device-owners would get a higher weight in our mobility

metric calculations. A possible additional complication would arise if a user maintains two

devices, with each linked to a different location or set of locations. This would make a highly

mobile user look artificially as though she does not move very much. For example, someone

who commutes each week from home in a rural area to work in a big city, using a different

device in each location, will appear as a relatively immobile individual. Unfortunately,

we do not have information on the extent to which users own multiple devices, but given

that smartphones are relatively expensive – and given the attachment that people feel to

particular devices – it is likely to be a rather small number.

One other issue with the ping data is that, for many purposes, we may want to exclude

incidental pings – such as those made by a person in transit. Someone traveling by road be-

tween two locations may appear to have ’visited’ a location when in fact she simply passed

by in a bus or train. This requires distinguishing between locations that were deliberately

visited and those that appear to be incidental. In particular, the use of navigation apps

might skew the distribution of pings towards low density areas that users are simply pass-

ing through but not deliberately visiting. This is particularly relevant for our metrics that

categorize destinations by their population density. In Appendix A.4 we describe a filtering

algorithm that we developed to identify transit pings. In general, we find that relatively
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small fractions of pings appear to be ’transit pings’. In the analysis that follows, where our

descriptive statistics are most susceptible to being distorted by transit pings, we show the

robustness of our results to removing transit pings.

Finally, we note that users may not leave their devices turned on at all times, they might

not always have coverage, and they may not connect with apps during all of their travels

(e.g., if data charges are high). This would lead to a systematic underestimation of the

frequency of travel and the distance travelled. With all these caveats, however, we proceed

to analyze the mobility data.

4. Quantifying mobility

In this section, we develop and implement a number of indicators to measure high-frequency

mobility patterns. We consider mobility on two levels: the mobility of individual users

across locations, and the connectedness of different locations through these individual

movements. We characterize mobility at the user level on four key dimensions: frequency,

spatial extent, densities and specific locations visited. Our preferred indicators in this re-

spect are the fraction of days with mobility beyond 10km away from home (frequency), the

average distance away from home (spatial extent), the distribution of (non-home) pings/users

across population density categories (densities visited), and distinct cities visited.16 We in-

vestigate how these vary across subsets of users residing in different population density

categories – for which we use population density deciles as cutoff values to define these

density bins. In characterizing the connectivity of locations, we quantify incoming and

outgoing flows separately. We characterize incoming mobility flows by their size, with the

number of distinct visitors during the period of observation, but also by the frequency of

visits to the city, the distance travelled, and the population density at visitors’ home loca-

tions. Similarly, we calculate the size of outgoing flows, i.e. the number of distinct residents

seen outside the city during the period, the frequency of movements outside the city, their

spatial extent and the population densities visited. In addition, we provide measures of

mobility flows for pairs of cities. We examine the origin locations of visitors in the five

largest cities in each of our three countries, and we also look at the top destinations visited

by their residents. We disaggregate both the origin and destination locations into densities

16Appendix Figure E.3 and Tables E.4– E.5 show days with mobility and mean distance away from home
for the base, low-, medium-, and high confidence sets. We find that the observed patterns are very similar.
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and summarize our data in the form of a spatial transition matrix to examine the connec-

tions between remote and dense areas. Finally, we define visits and present evidence on

the type of locations visited: flows of visitors between specific locations, number of cities

visited and destinations visited within cities.

We begin by considering the frequency with which people leave their home locations. Some

initial notation is helpful. Let x ∈ X denote a location, where X is a set of 0.01-degree

resolution grid cells covering the country extent. For any given user i in the set of users I ,

we can partition X in two ways. First, we partition X into the home location and non-home

locations. Let di(x) denote the haversine distance to location x from the home location of

user i.17 Define the distance threshold d̄ to be the limit of the home location. Then for user

i, the set of locations such that di(x)≤ d̄ defines a set of locations near home, Hi. Similarly,

H̄i = {x ∈ X | di(x)> d̄} defines a set of locations away from home. For any user i, it is true

that Hi ∪ H̄i = X .

A second useful way to partition X for a given user i is into the subset of locations (typically

a strict subset) where user i is observed with a ping and those where the user is not observed.

We use Zi to represent the set of locations where we observe a ping from i during the period

of observation, and we in turn partition Zi into those locations near i’s home location - as

defined by d̄ - denoted ZH
i and those that are considered away from home, denoted Z H̄

i .

In addition, we denote by Zi t the set of locations where we observe a ping from i on any

given day t and that we can partition into ZH
it and Z H̄

i t .

As a final notational preliminary, define an integer-valued function pi(x) that counts the

number of pings for user i in each location x ∈ X . Clearly, pi(x)≥1 for x ∈ Zi, and pi(x)=0

elsewhere. Let Pi =
∑

x∈X pi(x) give the total number of pings for user i.

4.1. Frequency

As our first measure, we use the fraction of days a user is seen more than 10 km away from

her home location (i.e., we set d̄ =10km). Let Mi t be a mobility indicator such that Mi t =1

on any day, t, if there is at least one ping observed for person i at a location away from

home; i.e., Z H̄
i t 6= ;. Define Mi =

∑365
t=1 Mi t to be the number of days the user is seen more

than 10 km away from her home location. Similarly, let Ti t be a dummy indicating whether

17Strictly speaking, we use the haversine distance between 2-decimal rounded latitude-longitude locations.
This is equivalent to taking the haversine distance between the centroids of two narrowly defined grid cells.
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at least one ping is observed for person i at any location on day t; i.e., Ti t = 1 if Zi t 6= ;;

and let Ti =
∑365

t=1 Ti t be the number of days over the period of study where at least one

ping from user i is observed. Then we define the mobility frequency for user i as:

Fi =
Mi

Ti
. (1)

In this expression, the numerator denotes the number of days with at least one ping 10 km

away from home for user i, and the denominator gives the total number of days on which

user i is observed (i.e., days with at least one ping). We find that the fraction of days on

which users are more than 10km away from home ranges from 11.8 in Tanzania to 15.2

in Nigeria. A limitation of this metric is that it does not allow us to distinguish between

users making a lot of short trips and those travelling less but spending more time at their

destinations, something we consider in Section 4.4.

To translate this individual measure into a characteristic of a group of people, we average

across the members of that group. For this, it is useful to define some groups of people. As

noted above in Section 3, we assign each user to a population density bin, based on the char-

acteristics of the user’s home location. For instance, we consider the set of decile-bounded

bins, B = {b1, b2, ..., b10}, and we define the corresponding subsets of users I1, ..., I10. Let

n j denote the number of users assigned to bin b j, i.e. the number of users in I j. We then

compute:

F j =
1
n j

∑

i∈I j

Fi. (2)

Figure 5 shows this frequency for all three countries, broken down by density bin. The pat-

tern is consistent across countries: on roughly 12-15 percent of the days when we observe

them, users appear beyond the 10 km radius from their home locations. There is a distinct

pattern, too, in that those who live in the most densely populated areas are the least likely to

be observed away from home. We also calculate the fraction of days with mobility beyond

20km and observe similar and even more marked patterns. One plausible interpretation

is that those who live in relatively remote areas are likely to travel more frequently than

those who live in towns and central cities. We cannot, of course, distinguish between the

frequency of trips and the frequency with which users turn to their phones for informa-

tion. It is possible that users are more likely (or less likely) to use their devices when they

are travelling, compared to when they are home; and these patterns may differ for people
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whose home locations are in different bins of population density. Nevertheless, the data are

suggestive both of a relatively high overall frequency of mobility and of differences between

rural and urban residents.18

Figure 5: Fraction of days with mobility beyond 10km by density bin.

(a) Kenya (b) Nigeria (c) Tanzania

Note: This figure shows the fraction of days on which a user is seen more than 10km away from
their home location by density decile over the period of a year.

4.2. Spatial extent

We define the spatial extent of mobility for user i as the average distance between non-home

pings and the home location. Note that for this metric, we take d̄ = 0 to define the sets of

home locations and non-home locations, Hi and H̄i. As before, let pi(x) be the number of

pings we observe for user i at location x . Then let PiH =
∑

x∈Hi
pi(x) and PiH̄ =

∑

x∈H̄i
pi(x);

consistent with our notation above, the total number of pings observed for user i is simply

Pi = PiH+ PiH̄ . In simple terms, PiH̄ is the number of non-home pings of user i.

Given this, we can construct the spatial extent of user i’s mobility, which is the average

distance to each of her non-home pings. Thus:

Si =
1

PiH̄

∑

x∈ZiH̄

di(x)pi(x). (3)

We find that the average distance of non-home pings ranges from 37.1 km in Kenya to 52.2

km in Tanzania. In extrapolating this measure to a group of people, we can once again take

an average. For example, we can measure the average of our spatial extent measure for

18As a robustness check, we reproduce Figure 5 with truncated means; that is, we discard values in the top
5 percentiles, to address the concern that the results could be driven by a small set of highly mobile users. We
observe small decreases in the average fraction of days away in all density bins but no change in the overall
pattern of decreasing frequency with population density.
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the individuals belonging to a population density bin b j by simply averaging the individual

values of Si. Thus:

S j =
1
n j

∑

i∈I j

Si. (4)

Figure 6 shows that non-home pings are not all highly local. In fact, the average distance

– across countries and density bins – ranges from 30 km to above 100 km. As in Figure 5,

Figure 6: Mean distance away from home by density bin.

(a) Kenya (b) Nigeria (c) Tanzania

Note: This figure shows the average distance from users’ home locations of non-home pings by
density decile over the period of a year.

we see a pattern across density bins suggesting that those in relatively sparsely populated

areas seem to travel the farthest – in the sense that their average distance away from home

(conditional on being away from home) is higher than for those in more densely populated

locations. It is interesting that both the absolute distances and the relative patterns across

density bins look quite similar across the three countries.

Taken together, Figures 5 and 6 seem suggestive of a pattern in which those from relatively

remote areas travel more frequently and farther – possibly to get to towns and cities. To

assess this conjecture, we next turn to the third dimension of mobility and construct a first

measure that allows us to characterize locations visited by users in terms of population

density.

4.3. Densities visited

Let N(x) denote the population density at location x . Based on this, let Ñ(x) be an indicator

mapping locations into density bins; in other words, Ñ : X → B. We consider the set of non-

home locations pinged by person i, and we assign each ping to a density bin b j. Then the
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fraction of pings in non-home locations by user i to locations in density bin b j is given by:

vi j =

∑

x∈{x∈H̄i :Ñ(x)=b j}

pi(x)

PiH̄
(5)

Once again, we summarize our measure at the level of each group Io of users with home

location in density bin of origin bo by calculating the average fraction of non-home pings

in each one of the 10 density bins of destination (bd)d∈[1;10]. Then our measure becomes:

Vod =
1
no

∑

i∈Io

vid . (6)

From this, we construct an aggregate metric at the density bin level to describe the popula-

tion densities visited at least once by users belonging to each density bin b j. For each user

i ∈ I j and each density bin bk, we define pik as a dummy indicating whether user i ever

visited a location in density bin bk:

pik =







1, if ∃x ∈ {x ∈ X |Ñ(x) = bk}

0, otherwise

Then the fraction of users whose home location is in density bin b j and who are seen at

least once in a location belonging to population density bin bk is:

∆ jk =

∑

i∈I j

pik

n j
. (7)

Table 3 shows the results for the mobility measure∆od and thus provides more detail about

the locations visited by people when they are away from their home location.19 This table

gives the fractions of users residing in a given density bin who are seen over the course of

the observation span on at least one occasion in a non-home location within each of the

ten density bins. For instance, this tells us that 6.7% of those Kenyans living in the most

densely populated locations in the country were observed on at least one occasion during

19Results for Vod (the average distribution of non-home pings across density bins) are shown in Appendix
Table E.6 for our three countries.
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Table 3: Share of users by home bin-visited bin pair, no adjustment for transit pings.

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 72.3% 32.9% 15.1% 11.8% 11.9% 14.7% 13.3% 15.1% 9.5% 6.7%
2 42.9% 61.4% 38.1% 26.9% 21% 17.5% 18.6% 20.9% 15% 11.4%
3 25.9% 46.2% 55.5% 43.8% 35.8% 29.6% 28.8% 25.5% 19.4% 14.7%
4 33.9% 34.2% 52.5% 56.6% 46.9% 39.4% 35.3% 29.6% 23.7% 17.8%
5 30.4% 25.9% 43% 52.2% 53.6% 49.3% 38.8% 35.7% 25.5% 18.9%
6 27.7% 27.2% 30.2% 47.1% 46.6% 55.5% 47.4% 38.3% 26.5% 19.7%
7 26.8% 28.5% 35.5% 44.8% 45% 56.5% 57.9% 48.5% 35% 24.5%
8 42% 44.9% 45.7% 56.9% 57.1% 60.8% 68.4% 69.7% 50.8% 36%
9 55.4% 54.4% 53.6% 66% 65% 67.8% 72.1% 79.8% 89.8% 76%
10 32.1% 36.1% 30.6% 41.4% 37.5% 40.9% 45.8% 51.7% 70% 88.6%

(a) Kenya

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 35.7% 19.6% 18.8% 6.8% 6.1% 3.8% 3.3% 3.1% 2.5% 1.5%
2 23.8% 33.3% 35% 12.1% 12.6% 9.1% 6.8% 6.1% 5.3% 3.2%
3 26.2% 29% 41.5% 32% 18.9% 13.1% 10.5% 8.8% 7.3% 4.7%
4 31% 26.8% 45.3% 35.2% 32.6% 22.3% 15% 12% 11.2% 6.9%
5 23.8% 33.3% 43.6% 45.9% 51.3% 38.1% 27% 21% 20.1% 15.2%
6 33.3% 33.3% 37.6% 53.9% 60% 68.7% 45.8% 31.5% 26.8% 17.4%
7 42.9% 55.8% 50.9% 52.7% 64% 69.9% 76.1% 56.1% 39.8% 25.5%
8 71.4% 58.7% 54.7% 58.7% 61.5% 60% 72.8% 81.2% 63.7% 37.9%
9 76.2% 61.6% 62.8% 62.6% 66.8% 64.1% 68.4% 81.2% 91.5% 64.7%
10 42.9% 44.9% 43.2% 44.7% 50.2% 47.8% 46.9% 46.9% 61.9% 95.3%

(b) Nigeria

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 73.6% 33.8% 18.2% 15% 15.2% 10.3% 11.6% 9.5% 7.9% 4.4%
2 18.7% 50% 40% 29.3% 22.6% 15.2% 14.9% 11.6% 9.1% 5.4%
3 13.2% 39.7% 43.6% 38.8% 30% 20.1% 15.4% 13.7% 10.6% 6.3%
4 14.3% 38.2% 40.9% 42.2% 39.2% 24.2% 20.7% 15.8% 12.3% 7.7%
5 16.5% 33.8% 42.7% 40.8% 36.9% 43.4% 27.2% 20.3% 14.3% 8.3%
6 19.8% 26.5% 35.5% 41.5% 46.5% 51.2% 42.2% 24.5% 17.7% 10.6%
7 30.8% 38.2% 44.5% 46.9% 41.9% 54.2% 64.4% 42.6% 26.5% 15.8%
8 42.9% 44.1% 50% 47.6% 51.2% 55% 62.6% 82.6% 56.9% 33.6%
9 40.7% 51.5% 54.5% 48.3% 55.8% 59.1% 56.1% 68.7% 88.4% 66.2%
10 40.7% 35.3% 31.8% 38.1% 32.7% 38.8% 39.7% 45% 64.5% 93.5%

(c) Tanzania

Note: These matrices show the proportion of users residing in home density bin i that are seen at
least once in visited density bin j over the period of a year.

the year in a cell that falls within the least densely populated parts of the country. At the

other end of the distribution, 32.1% of the users whose home locations are in the most

sparsely populated areas of the country were observed at least once during the year in the
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most densely populated parts of the country. These results hold even after filtering out

potential “transit pings” as discussed in Section A.4 (for details, see Appendix Tables E.7

and E.8). Taken together, these tables offer a picture of highly mobile populations across

all three countries, with people travelling both far (measured in terms of distance) and to

locations that differ markedly from their home locations.

4.4. Specific locations visited

As an alternative to using density deciles for our analysis, we consider in Appendix Table

E.9 the "visitors" to the major cities of our three countries. A visitor is defined here as

someone whom we observe in a city whose home location falls outside the city boundaries.

We categorize visitors as those who are residents of other major cities in the same country,

and then we also consider a group of "non-urban" visitors, who are those who live outside

the boundaries of any city of more than 200,000 people.20

The data for all three countries show similar and interesting patterns. The largest city con-

sistently has a large number of visitors defined as "non-urban", implying that these cities

are magnets for travellers from the entire country. There are consistently large flows from

secondary cities to these primate cities, but the proportions fall off sharply to more minor

cities. In contrast, the secondary cities typically see large inflows of visitors from the pri-

mate cities, along with large inflows from non-urban areas. The flows across and between

secondary cities are typically fairly modest, according to this metric. In Kenya, Eldoret has

little that Kisumu lacks, and vice versa – so even though these cities are less than 150 km

apart, each accounts for less than 3% of the visitors in the other. The same patterns are

seen in Nigeria and Tanzania. For Nigeria, to give another example, although visitors from

Kano make up 10% of the documented visitors to Kaduna, relatively few of those visiting

Kano are from Kaduna. In each city, far more visitors come from towns, villages, and rural

areas (together characterized as "non-urban").21 A striking feature of these tables is that the

largest city is the leading destination for those living in almost all other cities – regardless of

distance. Curiously, urban dwellers are also relatively likely to have been seen in non-urban

areas. This is suggestive of the possibility that secondary cities are relatively substitutable

20See Appendix Section B for the definition of city boundaries. The reference year for city-level population
counts is 2018.

21We can similarly look at the destinations of those whose home locations are in the major cities of our
three countries. For these urban dwellers, we can ask what proportion were seen during the year in other
major cities and in non-urban areas. The results of this analysis are shown in Appendix Table E.10.
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for one another, but the largest cities (and perhaps also non-urban areas) offer benefits that

are somehow distinct. This may reflect a lack of specialization and differentiation between

secondary cities – an issue that has been raised previously in sub-Saharan Africa (see, for

example, Henderson and Kriticos (2018)).

As a final step in our characterization of mobility, we examine in more detail the number

of distinct visits individuals make as well as what type of amenities the data suggest people

consume when making these visits. Appendix A.5 provides the details on how we define

visits. Figure 7 shows the distribution of users by number of cities that they visit (excluding

the home cities of urban residents). The figure shows that a sizeable fraction of residents

make visits to one or more cities other than their own during the period over which we

observe them. Rural residents are again more likely to make a visit to a larger number

of cities. To what extent are visits to cities events that occur as an exception rather than

Figure 7: Distribution of users according to the number of cities visited, by population
density bin.

(a) Kenya (b) Nigeria (c) Tanzania

Note: This figure shows for each decile the distribution of users who are never seen in a city, those
who visit exactly one city, those seen in two cities and those visiting three or more cities. These
counts exclude the home city in the case of urban residents.

journeys individuals embark on with some regularity? Figure 8 shows the average number

of visits to cities users make, again by density decile. The data shows that users make mul-

tiple visits to non-home cities on average, further supporting the view that visits represent

a technology to consume amenities on repeated occasions that these cities offer but home

locations do not.

While we can not know the type of amenities that are consumed on visits nor the precise

purpose of a visit to a particular location, in a final step we inspect the locations that visi-

tors to cities are seen at. To investigate these destinations systematically, we link our ping
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Figure 8: Average number of visits to cities, by population density bin.

(a) Kenya (b) Nigeria (c) Tanzania

Note: This figure shows for each decile the average number of distinct visits to cities across users.

locations with data from Open Street Map polygons for six cities, two from each country:

Lagos, Abuja, Nairobi, Mombasa, Dar es Salaam and Dodoma.22 We then pool all these

pings and show the types of places visited for these six cities.

Overall, we match more than 80% of visitors to at least one polygon as shown in column

(1) of Table 4.23 The first two columns show the places visitors are seen at. We then split

the sample of visitors into those from rural and urban areas, taking a threshold value of

300 people per square km.24 For comparison, the final two columns show locations visited

by residents of these cities. The table shows that about 80 percent of visitors are seen at

residential locations, and about half of the visitors are seen while on a road or a roadside.

Slightly more than one third of visitors are seen at locations related to travel (e.g., airports,

train stations, hotels). About one out of three visitors is seen at shops and markets or retail

locations. About one out of five visitors is seen at a commercial or industrial zone. Slightly

more than 10 percent of visitors are seen at recreational locations (e.g., stadium, cinema,

nightclub, theatre). About 12 percent is seen at a location offering public goods and services

(e.g., hospital, health centre, university, police station, government buildings). The other

category includes military zones and urban agricultural areas. When disaggregating visitors

by home population density, the main differences are that a lower proportion of rural visitors

is seen at residential areas; they are more often seen at shops and markets, public goods

and services, recreational locations, locations related to food and drinks (e.g., restaurants,

22See Appendix A.6 for details.
23Matching rates disaggregated by city are provided in Appendix Table A.2.
24We chose this threshold for comparability with other datasets; for example, in the Global Human Settle-

ment Layer, most rural clusters have a density below 300 inhabitants per square km (Schiavina et al., 2022).
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bars, food courts, cafes) and places of worship (e.g., cathedrals, mosques, synagogues and

churches).

When comparing residents with visitors, residents are, reassuringly, more often seen at

residential locations as well as most of the other categories. This is unsurprising, since we

observe them for longer times in these cities we are more likely to see them visiting one of

these different types of locations. The only places we observe them less often than visitors

are roads and roadsides and places related to travel.

Table 4: Distribution of users across places visited by density of origin.

Visitors
Visitors from Visitors from

Residents
Below 300 Above 300

Users % of users Users % of users Users % of users Users % of users
Total 16,156 - 590 - 15,543 - 67,982 -
Total users matched with OSM 13,214 100.0% 438 100.0% 12,756 100.0% 60,432 100.0%
Residential 10,628 80.4% 288 65.8% 10,325 80.9% 54,633 90.4%
Roads and roadsides 6,815 51.6% 251 57.3% 6,560 51.4% 36,795 60.9%
Travel 4,825 36.5% 162 37.0% 4,652 36.5% 17,329 28.7%
Shops and markets 3,775 28.6% 159 36.3% 3,614 28.3% 30,076 49.8%
Commercial zone 2,835 21.5% 88 20.1% 2,745 21.5% 21,366 35.4%
Industrial zone 2,280 17.3% 78 17.8% 2,197 17.2% 21,445 35.5%
Public goods and services 1,540 11.7% 70 16.0% 1,469 11.5% 16,315 27.0%
Recreational 1,008 7.6% 45 10.3% 962 7.5% 10,516 17.4%
Other 733 5.5% 35 8.0% 696 5.5% 7,311 12.1%
Food and drinks 347 2.6% 16 3.7% 331 2.6% 3,893 6.4%
Worship 331 2.5% 16 3.7% 314 2.5% 4,733 7.8%

Note: This table links the locations of visitors to Lagos, Abuja, Nairobi, Mombasa, Dar es Salaam
and Dodoma and residents of these cities with OSM data to show the type of locations visitors and
residents are seen at.

This section has reported on a number of different measures of mobility. These measures

point to some consistent stories. The smartphone users in our data represent a mobile

population. On average, they are more than 10 km from home on about one-sixth of the

days on which they are observed. Those in more sparsely populated areas are more fre-

quently away from home than those who live in city center locations. When they venture

from home, they frequently travel far; when we sight them away from home, they are on

average between 35 and 50 km away.

Flows are not limited to inter-urban movements of city dwellers visiting other cities; on the

contrary, the data show extensive movement across and between many different locations.

Many users visit more than one city (other than their home city) over the sample period,

and we observe people making repeat visits to the same city. Users appear to consume a

diverse range of amenities during their stays, taking advantage of opportunities for market
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visits, administrative tasks, health services, and more. We emphasize that these visits do

not appear to reflect regular commuting, nor do they correspond to permanent or seasonal

migration.

5. Conceptual framework

Having documented the patterns of mobility that we observe in the data, we now turn to

a theoretical framework in which these mobility choices arise from optimizing behavior of

individuals. We presume that individuals make choices about where to live, which desti-

nations to visit (and how frequently and for what duration), along with the usual choices

about consumption. We consider that individuals are operating within the context of spa-

tially dispersed economies that are characterized by a range of mobility frictions. These

frictions shape the equilibrium patterns of location choice and mobility.

Our theoretical structures are designed to correspond to the mobility patterns that we ob-

serve in the data. The evidence shows many individuals travelling from their home locations

to visit other destinations, returning to their points of origin location. In our data, many

of these visits are temporary; individuals return to the home location after each visit. But

most of the visits we observe do not appear to be well characterized as commuting: they

cover longer time periods and distances than one would expect from daily commutes. This

is not to deny the significance of daily commuting in our three countries; but our model,

like our data, focuses instead on the phenomenon of longer-duration and longer-distance

visiting. We also note that our data do not allow us to observe permanent migration with

any confidence, since we have only one year of data and observe individuals on average

on 40 distinct days over a period of 100 days. Our theoretical framework leaves open the

possibility of permanent migration but has little to say about it.

Our model draws on insights from models such as Miyauchi et al. (2022) or Redding and

Turner (2015), but we simplify greatly in matters on which our data are silent. In particular

we abstract from detailed modelling of housing costs, and we greatly simplify our treatment

of labor markets and goods markets. This allows us to focus solely on the between-location

visits that comprise our data. In comparison with Bryan and Morten (2019), we also ab-

stract from modelling labor market matching and the corresponding implications for per-

manent or seasonal migration.
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The model economy is defined spatially as consisting of a set of locations, X . As in our

mobility metrics above, a particular location – corresponding approximately to a grid cell

in the data – can be denoted as x ∈ X . In our data, people are observed living at particular

home locations. We consider that the initial allocation of individuals across home locations

is historically determined but is sustained at present as a spatial equilibrium with frictions.

5.1. People

The economy is populated by a large number of people. Each person i has a home location,

h∈ X , which is the location in which the person lives and purchases consumption goods.

5.1.1. Preferences

Individuals have preferences over an agricultural good, ai; a non-agricultural good, ci;

and a good qi that can be characterized as location-specific amenities. Individuals also

have additively separable idiosyncratic preferences over home locations; individual i re-

ceives utility ψi (h) from living in home location h. These preferences over home locations

capture a large range of unobserved dimensions of location characteristics that may differ

across individuals, such as proximity to families and social networks, or local knowledge of

customs and norms. This structure also rationalizes the initial distribution of population,

in the sense that a spatial equilibrium holds essentially by construction. Thus, preferences

are represented by the utility function Ui = u(ai,ci,qi)+ψi (h).

Note that the goods ai and ci are purchased in the home location at the prevailing prices

in that location. When at home, individuals also consume the amenities produced in the

home location. However, individuals may also consume the amenities produced in different

locations. These are imperfect substitutes for one another, and individuals have a preference

for variety in these location amenities. To consume the amenity of a different location, an

individual must travel to that location for a “visit” of some minimum duration. (Without

loss of generality, think of this as at least one day. In other words, simply passing through

a location does not allow a person to experience the amenity.)

The quantity of the amenity consumed on a visit to a location depends on the duration of

the visit. It also depends on the quantity of amenities that the location produces; as will be

discussed below, different locations provide different levels of amenity to their visitors. Let

θi x denote the fraction of time that person i spends in location x in the course of a year.
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Assume that location x produces amenities y (x). Then qi x = θi x y (x), where 0≤ θi x ≤ 1.

Note that across locations,
∑

x θi x ≤ 1. (The inequality may hold strictly, since we exclude

time spent in transit.) Over the course of the year, an individual thus aggregates location

amenities based on the time spent in different locations, according to a CES expression that

allows for some preference for variety:

qi =

�

∑

x
(qi x)

ρ

�
1
ρ

=

�

∑

x
(θi x y (x))ρ

�
1
ρ

.

5.1.2. Travel and the accumulation of location amenities

In what follows, we will assume that a visit to any particular location has a minimum time

duration (e.g., one day), so as to avoid treating transit through a location as a visit. This

implies that the fraction of time that individual i spends in location x will be the sum of

time spent on some integer number of distinct blocks of time that the person makes to that

location. We define each of these blocks of time as a visit. Let Vi x ≥ 0 denote the number of

distinct visits by person i to location x . (Without loss of generality, we can treat the home

location as simply one of the locations x ∈ X .) Using v to index these visits, and letting θivx

denote the proportion of person i’s time spent in location x on visit v, then:

θi x =
Vi x
∑

v=1

θivx

During a visit, the individual receives utility that reflects the duration of the visit and the

quantity of amenities available in the destination, as discussed below. Longer visits generate

higher utility, as do visits to locations with higher levels of amenities. Amenities accumu-

lated from different locations are effectively varieties, and the utility structure allows for

consumption to vary along both the extensive margin (number of different locations visited)

and intensive margin (duration spent in particular locations).

Travel to a location is costly. When person i travels to location x , where x 6= h, three costs

are incurred. The first is a fixed cost of making a trip – the cost of leaving home; this is

denoted by λ. The second is a cost per unit of distance travelled from origin to destination.

Finally, there is a cost per unit of time spent in x . In a slight abuse of notation, let Di x

represent the distance between the home location h of person i and location x , and let γ

31



represent the unit cost of distance. Moreover, let τx denote the cost associated with time

spent in location x . Then the cost faced by person i of a visit to location x of duration θi x

is: λ+γDi x +τxθ
α
ivx , where α> 1 to reflect the fact that longer visits are more costly, per

unit of time, than shorter ones. (This assumption serves to motivate the possibility that an

individual might make multiple visits to the same destination in the course of a year.)

The cost structure of travel seems complicated, but each of these costs has a correspond-

ing real-world element. For instance, one could think of the fixed cost as related to the

monetary and non-monetary costs of planning a trip, while the distance cost is the bus

fare. The increasing cost of visit duration is intended to capture the fact that a brief visit

might involve only modest imposition on friends and relatives, while a longer visit requires

a more substantial investment in room and board, not to mention higher costs associated

with being absent from the home location. For instance, a shopkeeper from a small town

can travel for two days at relatively low cost to a nearby city to visit family members and

to source supplies. To be gone for two weeks, however, requires turning over management

of the shop to an assistant, and it may require paying a higher price – either formally or

informally – for room and board.

5.1.3. Budget constraint

Individuals supply one unit of labor inelastically to the labor market in their home location,

and in return they receive a real wage w(h) that is location-specific. They allocate this

income to expenditures on the agricultural good, the non-agricultural good, and the costs

of any trips that they make. The agricultural good and non-agricultural good have prices

that are location-specific, πa (x) and πc (x). Wages and travel costs are denominated in

a numeraire good. The amenities themselves are of course free to consume, but travel to

non-home locations incurs the costs described above. This gives rise to a budget constraint

for individual i that can be written as:

πa (h)ai+πc (h)ci+
∑

x



Vi x (γDi x +λ)+
Vi x
∑

v=1

τxθ
α
ivx



≤w(h) .
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5.1.4. Individual’s problem

The individual’s problem is then well-defined. Taking her home location as given, she

chooses the quantities of the consumption goods, ai and ci, and the number and duration

of visits to each non-home location, Vi x and θivx to maximize utility subject to the budget

constraint above.

5.2. Geography

Let N(x) be the population living within location x; in effect, this is a measure of population

density. We will describe a location as populous if it has a population density N(x)> n̄. We

will go further and define a settlement (a term intended to include both towns and cities)

to be a subset of populous locations K ⊂ X that meets three criteria: (a) the locations form

a contiguous spatial group within X ; (b) for each location x in K , the density criterion is

satisfied; and (c) the total population of the settlement exceeds some threshold value for

total population – i.e.,
∑

x∈K N(x)> N̄ . There will necessarily be a finite set of settlements,

which we denote as K̄ . For notational simplicity, let N1,N2, ...NK̄ denote the populations of

the different settlements; furthermore, without loss of generality, we can order the indexing

such that N1<N2< ...<NK̄ . Note that not all people live in settlements; we define as “rural”

those people who live in low-density locations, along with those living in clusters of density

that do not meet the aggregate population threshold (e.g., small villages and communes).25

5.2.1. Location amenities

The amenity is a non-tradable public good (non-rival and non-excludable) that is consumed

by people who live or visit a location. The amenity is produced with increasing returns to

population size. In particular, for settlement k, y (k) = ANβk gives the production quantity

of this location amenity, where β > 1. It would be possible to define amenities produced

at different rural locations in the same way, but for simplicity here, we will assume that all

non-home rural locations produce an identical amenity, yr , which is lower than the level

produced in the smallest settlement; in other words, yr < AN̄β .

The structure of amenity production captures in a simple way that there are agglomeration

25In the data for our three countries, cities and towns are defined in a variety of different ways. Our
formulation is a convenient one to use, and it is consistent with many standard approaches. However, none
of our results depends on this particular way of defining or characterizing settlements.

33



effects in the provision of amenities, such that larger cities in general produce higher levels

of amenities. This implies that the utility derived from a one-day visit to a large city is

greater than that from a visit of identical length to a smaller city. However, working against

that are the preference for variety and the role of distance. A nearby small city may be

less costly to visit than a faraway city that is larger; and all else equal, individuals will be

inclined to want to visit multiple locations. The duration of visits will reflect a balance

between the fixed cost and distance cost of travel, on the one hand, and the increasing

duration cost, on the other hand. Individuals will be likely to make multiple visits to the

same destination when that location is relatively close (so that the distance cost is low).

The duration of a visit will tend to be longer when the destination is far away.

5.3. Production

In what follows, we consider the simplest possible production arrangement for this econ-

omy. All rural areas produce the agricultural good, and all settlements produce the com-

posite non-agricultural good. With no disutility from labor, each worker supplies one unit

of labor inelastically. Each worker in a location produces one unit of the good, so yax =Nx

for every rural location, and ycx = Nx for every urban location. In the simplest specifica-

tion, both goods are frictionlessly traded on a world market, with prices πa (x)=π∗a∀x and

πc (x) =π∗c ∀x determined exogenously to the model economy. This is obviously a strong

simplification, particularly for the economies we are studying, but it allows us to focus on

frictions to the mobility of people, consistent with our data. Note that an immediate impli-

cation of the production structure is that wages will differ in rural and urban regions, with

wa =π∗a and wc =π∗c .

5.4. Equilibrium

We focus on a short-run spatial equilibrium for this economy. The equilibrium is trivial, in

the sense that there are few endogenous variables. Assume (not unrealistically) that the

marginal value product of a worker in non-agriculture is higher than the marginal value

product of a worker in agriculture; or in other words that π∗c > π
∗
a. With prices of the

two tradable goods identical across locations, this immediately implies that real wages will

be higher in urban areas than in rural areas; indeed, realized utility per unit of income

will be higher in larger cities than in smaller cities, since larger cities are more productive
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in supplying amenities. This seemingly creates some potential for spatial gaps, but the

equilibrium is sustained by a combination of differences in location-specific preferences

and mobility frictions.

In a sense, the only interesting feature of the equilibrium is the endogenous optimization by

individuals of the number, duration, and destination of visits. The structure of the problem

gives rise to a number of predictions that can be tested against the data.

Proposition 1 Assume for simplicity that τx = τ̄∀x. Define the number of visits from settle-

ment k1 to settlement k2 as the sum of the number of visits by each individual living in any

location within the boundary of k1 to any location within the boundaries of k2. Denote this

number as Vk (1,2). Then

Nk2
> Nk1

⇒
Vk (1,2)

Nk1

>
Vk (2,1)

Nk2

.

In other words, the number of visits per person made from the smaller settlement to the

larger will exceed the number made in the opposite direction. This reflects the higher level

of amenities produced in the larger settlement. The logic of this proposition is simple.

Wages and prices are the same in both settlements; the distance and travel costs are also

identical. But the utility value of visiting the more populous location is higher for an indi-

vidual in the less populous location. The same logic will hold in general for visits from rural

areas to settlements of different size, but because rural wages are assumed to be lower, the

overall prediction is ambiguous; it depends on the size of the income effect and the differ-

ence in wages. For the case where π∗c =π
∗
a, it certainly follows that rural people will visit

settlements more frequently than town dwellers visit rural areas.

Lemma 1 If an individual makes multiple visits to the same location, they will be of the same

duration. This follows from the increasing cost with duration; the total cost is minimized by

making all visits equal in duration.

Proposition 2 Building on Lemma 1, this tells us that for any two locations that are visited,

there is a relationship between the settlement size (or rural status), the distance, the cost of

spending time, and the duration of the visit. Visits to settlement k1and k2 will be related

according to the non-linear relationship given by:
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θ1Nβ1

θ2Nβ2

!ρ−1

=
γD1+λ+τ1θ

α
1

γD2+λ+τ2θ
α
2

This expression does not give neat closed-form relationships, but consider the simple case

in which τ1=τ2=λ=0; in other words, a situation in which the only costs of visits are the

linear costs of distance. In this case, we can solve for the duration of a visit as a function

of distance and city size:

θ =
(ξγD)

1
ρ−1

ANβ
.

This in turn gives rise to an estimating equation in the form:26

lnθ =δ0+δ1 lnN +δ2 ln D+ε.

A more complete specification of the location-specific production function for amenities

might include a set of observable and unobservable location characteristics; this would

motivate an estimating equation in the same form, but including origin and destination

fixed effects ϕo and νd , with the destination fixed effect subsuming the destination city

size:

lnθod =δ0+δ1 ln Dod+ϕo+νd+εod . (8)

We will explore this relationship further in the next section.

Proposition 3 Given a choice between visiting two equidistant locations, an individual will

be more likely to visit the more populous location, and/or to stay longer in the more populous

location.

This follows trivially from the fact that a visit to the more populous location delivers higher

marginal utility because of the greater amenity value provided during a visit of the same

length.

26This equation is similar in flavor to a gravity equation coming out of quantitative spatial models devel-
oped by Ahlfeldt et al. (2015) and Kreindler and Miyauchi (2021).
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6. Empirical tests

We next explore to what extent our proposed conceptual framework is consistent with the

mobility patterns that we observe in the data by examining each of the propositions.

6.1. Proposition 1

Proposition 1 states that the number of visits per person from a smaller settlement to a larger

will be higher than the number made in the opposite direction. To test this proposition, we

sum all visits of users between city pairs throughout the year.27 We normalize the number

of visits by the number of users with home locations in each city, reflecting the fact that we

observe only a subset of the population. This gives a matrix where each entry corresponds

to the proportion of residents in a particular origin city who are observed travelling to a

given destination. We then determine which of the two cities is larger in population and

compare the flows of visitors in each direction. We do this for all pairs and perform a simple

pairwise t-test of the following null hypothesis

H0 :
Vk (1,2)

Nk1

=
Vk (2,1)

Nk2

(9)

where the proposition assumed that Nk2
> Nk1

for any two settlements within one of our

three countries. Table 5 presents the results from these tests. The table shows that in

all cases the average number of visits per person from the smaller location to the larger

exceeded the number made in the reverse direction. Given that some of the location pairs

Table 5: Number of visits between locations

Kenya Nigeria Tanzania
Vk(1,2)/Nk1

0.343 0.233 0.144
Vk(2,1)/Nk2

0.056 0.037 0.033
Ha: (Vk(1,2)/Nk1

−Vk(2,1)/Nk2
)> 0 0.000 0.000 0.000

n 121 751 157

Note: This table tests Proposition 1 by conducting a paired t-test that compares the number of visits
between locations of different sizes.

might have small differences in populations, we also explore whether the distribution of

27As for the rest of the paper, we define city boundaries as described in Appendix Section B. Here we
consider the subset of cities above 50,000 inhabitants – based on 2018 WorldPop population estimates. We
exclude visits that originate in non-urban locations.
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visits becomes more distinct when we vary the difference between the origin and destination

populations. Appendix Figure E.4 shows that this is indeed the case. The same pattern holds

true for Tanzania and Nigeria.

6.2. Proposition 2

Proposition 2 gives rise to a relationship between distance to the destination and the dura-

tion of visits. We now use our device-level data to estimate the equation (8)

lnθod =δ0+δ1 ln Dod+ϕo+νd+εod .

where θod represents the fraction of days a user residing in o spends in a particular city d,

ϕo and νd are origin and destination fixed effects and Dod represents distance between the

origin and the destination. Origin fixed effects proxy for any observables or unobservables

Table 6: Gravity model for inter-city mobility.

Kenya Nigeria Tanzania
(1) (2) (3)

ln (Distance) -.049∗∗ -.086∗∗∗ -.051∗∗∗
(0.021) (0.01) (0.017)

Obs. 7201 40077 7032
R2 0.115 0.107 0.111

Note: This table estimates equation (8). The dependent variable is the fraction of days a user residing
in origin o spends in destination d. All models include origin and destination fixed effects. Reported
standard errors are clustered at the user level. ∗, ∗∗, ∗∗∗ denote significance at 10%, 5% and 1%
levels.

at the origin. Table 6 shows the results from estimating this relationship using all visits

in our dataset, where we exclude visits that originate from rural areas. The table shows a

clear negative relationship between distance and the fraction of days users spend visiting

a city, after controlling for origin and destination fixed effects. The results are very similar

when we use travel time instead of distance.28 The negative coefficient on the distance

variable is also a key empirical regularity found in standard gravity equations that regress a

commuting or migration probability on the log of distance while controlling for origin and

destination fixed effects.
28When we cluster standard errors at both the origin and destination the significance levels in Kenya and

Tanzania drop to the 10 and 12 percent level, respectively.
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6.3. Proposition 3

Proposition 3 states that holding distance constant, an individual will be more likely to

visit a more populous destination and/or stay longer. To test this proposition, we extract

the destination fixed effects that we estimated with equation 8 and examine their relation-

ship with population. Figure 9 plots the city fixed effects against city size, where we use

the smallest city in each of the countries as the omitted category. A few points are worth

Figure 9: Destination fixed effects and city size.
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Note: This figure shows the city fixed effects ν̂d from equation (8) and log of population.

highlighting. First, the city fixed effects correlate significantly with city size. Second, the

figures highlight that Lagos, Dar es Salaam and Nairobi are outliers in terms of city size; all

have the highest city fixed effects, conditional on distances between city pairs and origin

city fixed effects. The political capital Abuja is well above the predicted regression line, in-

dicating that it receives more visits than its population size would predict. Other locations,

like Zanzibar, receive fewer visits than predicted by their population size. The model sug-

gests that Zanzibar, located on an island, clearly would receive more visitors than it does

without this barrier.
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Table 7 shows the results from the regressions of the city fixed effects on log population to

investigate the relationship more formally. The table shows that the destination fixed effect

Table 7: Destination fixed effects and city size.

Kenya Nigeria Tanzania
(1) (2) (3)

ln (Population) 0.156∗∗∗ 0.146∗∗∗ 0.161∗∗∗
(0.024) (0.021) (0.042)

Obs. 26 105 25
R2 0.313 0.268 0.374

Note: This table regresses the city fixed effects from equation (8) on log city city. Robust standard
errors in parentheses. ∗, ∗∗, ∗∗∗ denote significance at 10%, 5% and 1% levels.

is significantly higher for more populous locations, suggesting that individuals are signifi-

cantly more likely to spend a higher fraction of days in larger settlements. This underlines

the magnetic forces large cities play.

7. Conclusion

Until now, most of our knowledge about human mobility in low-income countries has come

from surveys that show migration flows between survey rounds. Often the surveys are

several years apart or longer (e.g., decennial censuses). This means that mobility is only

evident in these data sources over very long time horizons. The data from these surveys are

useful and informative in thinking about certain types of population movements, but they

tell us little about the ways in which individuals serve as links between different locations

– potentially moving goods, ideas, information, and relationships.

In this paper, we use smartphone location data to show how individuals move between mul-

tiple locations, taking advantage of the different opportunities and amenities that are avail-

able, and presumably building and maintaining social networks. But individuals’ move-

ments also serve to construct networks of locations. The extent of mobility between loca-

tions serves as evidence of spatial integration. Our data provide a detailed look at one type

of network of locations – a network based on human mobility. The paper builds on a re-

cent literature that has used “big data” to study commuting, migration and travel along trip

chains (Blumenstock et al., 2019; Kreindler and Miyauchi, 2021; Miyauchi et al., 2022).

Our contribution here is to focus on “visits”, which turn out to be ubiquitous.
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The data help us to improve our understanding of travel and mobility in African countries.

Our smartphone users travel frequently and relatively far. Travel is not limited to peri-urban

commuting, nor to migration (whether seasonal or permanent). Most of our sample con-

sists of urban dwellers, and we observe many of them travelling to other cities – indeed,

significant numbers travel to multiple cities other than their home cities. But perhaps sur-

prisingly, our urban users also travel to rural areas. For instance, some 20-40% of our urban

Kenyan users are observed in locations that can be characterized as rural (i.e., locations in

the bottom half of the population density distribution). Our research thus suggests that we

should be cautious in imagining that the villages, towns, and small cities of sub-Saharan

Africa are functionally cut off from large cities – or from each other. On the contrary, we

see substantial flows of people in all directions. Smartphone ownership appears not to

deter people from travelling; in that sense, smartphones do not appear to substitute for hu-

man mobility; we find that smartphones are often used by people when they are visiting

non-home locations.

Our analysis benefits from the availability of new data sources that allow for a startling level

of detail in observing mobility. Such data sources are increasingly available for low-income

countries, as well as for rich countries. The Covid-19 pandemic saw similar data used to

characterize the impact of lockdowns and other short-term questions. Our paper can be

viewed as an illustration of the potential for using such data to address deeper questions

about a range of issues in development. At the same time, the widespread availability of

these data raises concerns about privacy and security. Our analysis has avoided mining the

data to extract further information about individual users; we argue that there is much to

learn from the data while respecting the anonymity and privacy of individuals.

The data clearly also embed some intrinsic limitations. One relates to the selection issues

that make our sample unrepresentative. Although we filter out many “transit pings,” we

cannot fully determine which places people visit deliberately; we can only tell that people

used their devices while they were in particular locations.29 But we benefit from the large

number of observations and the large number of users.

Our samples are clearly selected and are not representative of national populations. For

the poorest people in our three countries, patterns of mobility may be very different from

29The underlying distinction is itself somewhat unclear; it depends on the unobservable intent of the trav-
eller, rather than on the characteristics of the locations or the trips.
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those we describe here. Even small monetary costs of mobility can be highly salient for the

poor. Poverty is not the only barrier to mobility: people also face mobility barriers linked to

gender, ethnicity, social class, age, and other dividing lines. Our data may also be atypical

at the country level; we cannot extrapolate clearly from our three countries to other parts

of sub-Saharan Africa, and certainly not to other parts of the developing world. Patterns

of mobility and frictions may look very difficult in Latin America or Asia. Nevertheless,

the methods that we develop in this paper illustrate the promise of new data sources. As

such data become more widely available, there is potential to learn far more about spatial

frictions, mobility, and the geographic patterns of human activity.
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A. Details on smartphone app data

A.1. Algorithm to identify home locations

The calculation of users’ home locations plays a critical role in our analysis of high-frequency

mobility patterns. First, home locations are often used as reference locations to observe mo-

bility trajectories. Second, home locations are used to evaluate the spatial coverage of our

sample by comparing the spatial distribution of users to the distribution of the population.

Third, knowing where our users live help us infer key information allowing to characterize

them, e.g. by pairing users with DHS clusters. In our base sample, we define home lo-

cations as the most frequently observed 2-decimal rounded coordinates at night (between
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7pm and 7am, local time). We consider that the likelihood of correct home location predic-

tion increases with both the number of nights a user is seen and the fraction of these she is

observed at the inferred home location. Therefore, we select a subset of users that are seen

at least 10 nights, of which at least half are at their home location. We call this subset the

"high-confidence" sample and use it as our core sample in the analysis of high-frequency

mobility patterns throughout the paper. We also build medium- and low-confidence sub-

sets that include users seen at least 8 and 5 nights respectively in order to evaluate the

robustness of our results - the required fraction of nights seen at home is kept at 0.5. The

corresponding sample sizes are given in Table A.1.

Table A.1: Number of users by subset and country

Base High Medium Low
Kenya 195,630 18,535 23,490 37,249
Nigeria 659,407 78,694 96,954 146,346
Tanzania 234,213 22,728 28,853 46,116

TOTAL 1,089,250 119,957 149,297 229,711
Note: This table shows the number of users in each subset by country. Unsurprisingly, the sample
size decreases with the minimum number of observed nights imposed and nearly doubles between
the high- and low-confidence subsets.

A.2. Construction of the base sample and data irregularities

Our initial samples have 317,420 users in Kenya, 958,207 users in Nigeria and 780,760

users in Tanzania. According to the methodology presented in Section 2, we cannot infer

home locations for users never observed at night (7pm-7am) and 121,790, 297,895 and

173,886 users are thus removed in Kenya, Nigeria and Tanzania respectively. Moreover,

in Nigeria, inferred home locations with equal latitude and longitude were deemed erro-

neous which resulted in 905 users being removed. In Tanzania, we identified a data sink

of 372,661 users with an inferred home location at (35.75;-6.18), which is located within

the city of Dodoma. This represents 52% of the initial sample while we estimated the city

of Dodoma to host 0.5% of the population.30 We entirely remove users with home location

coordinates at the data sink from the sample.

30See Appendix Section B for more details on the definition of city boundaries. We overlay 2018 WorldPop
population map to estimate the population in Dodoma, as we do in other parts of the paper to estimate city
sizes.
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A.3. Algorithm to identify work locations

Similarly to home locations, we assign a work location as the modal 0.01-degree cell in

which a user is observed between 9am and 6pm on weekdays. We again impose two re-

strictions: that (a) the user is observed for a minimum of 8 distinct weekdays and (b) is

seen at the inferred work location for at least 50% of the total weekdays. Overall, nearly

all users of the high-confidence set are seen for at least one weekday and 87,920 meet

the confidence criteria for the identification of work location, which represents 73% of the

high-confidence set. In this subset (“work subset”), home and work locations are found

within the same 0.01-degree cells for 80% of users which is in line with high rates of self-

employment and short-distance commuting.31

For those with distinct home and work cells, the median distance between home and work

is about 4.4 km with again some differences between urban (4.5km) and non-urban (3km)

users. Restricting our subset to users observed for a minimum of 10 days or considering

a higher resolution (0.001-degree cells) for home and work locations imply only marginal

changes to the results.

A.4. Algorithm to identify transit pings

To define transit pings we first define visits as sequences of successive pings located within

a same 5-km grid cell. We infer the minimum duration of visits from the time elapsed

between their first and last pings and classify these as a stay when they last more than

some limit value Tsta y . We choose a value for Tsta y that corresponds to the amount of time

required to drive through a 5km cell at 20 km/h. Other visits are then classified as transits

when (i) there is no evidence of their duration being at least greater than Tsta y and (ii) a

speed value greater than 20km/h is observed for at least 25% of their pings. The second

condition ensures that we are observing a user moving significantly faster than a walking

pace.

More formally, for a user i, the sequence of successive pings is denoted (ai
1, ...,ai

Pi
) with

Pi the total number of pings for user i. Each ping consists of a timestamp t i
j (in seconds)

31For instance, in Tanzania, the LSMS data show that median travel time between home and work for
urban wage workers is 30 minutes, which would normally correspond to about 2.5 km, assuming walking as
the mode of transport. The numbers for the self-employed and for rural workers are substantially less. The
fraction of users with identical home and work locations is higher in our data for the subset of non-urban
residents (86%), consistent with lower fractions of commuters in small cities and rural areas.
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and longitude/latitude coordinates coord i
j . For each country, we can partition the country

extent to resolve raw longitude/latitude coordinates and form a finite set of N locations

X = {x1, ..., xN}. In this case, we use a 5-km resolution fishnet so that X is a set of 5km

grid cells and we associate the sequence of pings (ai
1, ...,ai

Pi
) to the sequence of X -locations

(x i
1, ..., x i

Pi
). We formally define a visit as a sequence of successive pings at one given location

x ∈ X where the time elapsed between two consecutive pings is lower than some parameter

εvisi t .
32 For the mth visit of user i, v i

m=(x
i
jm

, ..., x i
j′m
), we define the visit minimum duration

T min(v i
m) as the time elapsed between the first and last pings of the visit, i.e. T min(v i

m) =

t i
j′m
− t i

jm
. The visit maximum duration T max(v i

m) is the time elapsed between the last ping

of the preceding visit and the first ping of the following visit, i.e. T max(v i
m)= t i

j′m+1− t i
jm−1.

T min(v i
m) (resp. T max(v i

m)) represents a lower (resp. an upper) bound estimate of the

actual amount of time spent at the corresponding location during visit v i
m. Finally, we

define the travelling speed at ping ai
j, speed i

j , as the ratio of the haversine distance to the

preceding ping ai
j−1 over the corresponding time elapsed t i

j− t i
j−1, if t i

j− t i
j−1≤ εspeed . The

value for εspeed is typically small to ensure that the straight line between ai
j and ai

j−1 is a

good approximation for the user’s trajectory between those two pings so that the estimated

speed value reflects the actual travelling speed – here we set εspeed to 30 seconds.

With these definitions in mind, we implement a filtering algorithm with the objective of

identifying pings corresponding to users simply driving through some locations. First, we

identify all visits for each user by setting εvisi t equal to 30 minutes. We classify a visit as

a stay if its minimum duration is greater than some value Tsta y corresponding to the time

required to travel along the diagonal of a 5km cell at an average speed of 20km/h, i.e.

Tsta y=1,273 seconds.33 Then, we classify a visit v i
m as a transit visit if the following two

criteria are met: (i) v i
m is not a stay 34 and (ii) at least 25% of speed values are greater than

20km/h.35 Visits that are neither stays nor transits are classified as undefined.

32εvisi t can be interpreted as the maximum amount of time of inactivity between two consecutive pings
at the same location we are willing to tolerate before considering that the user may likely have visited other
locations and returned to the initial location during said period of inactivity. Also, “isolated” pings, i.e. pings
being at least εvisi t seconds away from both their preceding and following pings, are considered as single-ping
visits.

33By considering the longest segment within a 5km cell and a speed value of 20km/h in the lower range
of possible average driving speeds, we use a conservative value for the parameter Tsta y .

34More formally, either T max (v i
m)< Tsta y , or T max (v i

m)≥ Tsta y and T min(v i
m)≤ Tsta y .

35We further impose that speed values are available for at least 80% of the pings in the visit to avoid
misclassifying visits where there is a high uncertainty around the estimated proportion of pings with speed
greater than 20km/h.
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We apply this algorithm to the three countries. Overall, 11% of the pings in the high-

confidence set are identified as transit pings while 70% are stay pings. Differences across

individual countries are only modest. Since the estimated total fraction of transit pings can

be largely influenced by a handful of major users, we also calculate the average fractions

of transit, stay and undefined pings across users.36 We find that, on average, only 2% of a

user’s pings are classified as transit – 48% are identifies as stay pings and the remaining 50%

as undefined. The average fraction of transit pings is markedly lower than the total fraction

and disparities between countries are also less pronounced, which together suggests that

major users differ from other users in that they showcase a relatively larger fraction of pings

sourced from navigation apps – or, at least, are relatively more observed when travelling.

A.5. Algorithm to identify visits

For the purpose of detecting distinct visits to cities, we consider the set of locations X as

the set of cities defined by 3km-buffered GRUMP polygons37 and its complement that we

qualify as “non-urban” areas, such that their union forms the country extent. A visit of user

i to a given (non-home) city c is broadly defined as a certain period of time spent by i in

city c. Taking this to our smartphone data, the mth visit of i to c, v i
m,c, materializes as a

sequence of pings (ai
jm,c

, ...,ai
j′m,c
) located within city c and reflecting a single stay of i to c.

For each user i, we effectively observe successive locations but to the extent that we do not

control the frequency of observation, we cannot always determine with absolute certainty

the location of users between two consecutive pings. In particular, a higher duration be-

tween two consecutive pings in a visited city is associated with a greater uncertainty as to

whether the user travelled to another location or returned home while unobserved. Also,

we are willing to tolerate a higher inter-ping duration as the home-to-city distance increases

as we can reasonably assume that the likelihood of a user making multiple trips decreases.

We formalize these qualitative characterizations of distinct visits in a two-steps algorithm

that we further describe below.

First, we detect sequences of consecutive pings at a visited city. In this first step, we use a

rather conservative criterion and, for any given user i, we allow for a maximum inter-ping

36In Kenya, the top 100 users in the high-confidence set account for 56% of the total number of pings. In
Nigeria and Tanzania, this ratio is estimated at 21% and 32% respectively.

37See Appendix Section B. We calculate city-level population values by overlaying city polygons with 2018
World Population map and consider the subsets of cities above 50,000 inhabitants.
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time εi
visi t that corresponds to a return trip in straight line between the considered ping and

the home location at a constant speed of 40 km/h. We introduce “home flags” that indicate

when a user was observed back to her home location between two consecutive sequences

of pings at a visited city. In fact, here we adopt a looser definition for home that we deem

sufficient to consider that the user returned home between what therefore qualifies as two

distinct visits: (i) the home city for urban residents and (ii) a 5-km buffer centered in

the estimated home location for non-urban users. Second, we allow for some grouping of

consecutive sequences of pings at the same visited city according to a set of well-defined

rules: (i) consecutive sequences of pings at the same visited city within a single day are

grouped to form a unique visit,38 (ii) if the travel time between the visited city centroid

and the home location is less than 2 hours, we group together sequences of pings that are

less than 12 hours apart,39 (iii) if the travel time between the visited city centroid and the

home location is strictly beyond 2 hours, we group together sequences of pings that are less

than 36 hours apart. With criterion (i), we allow for the possibility of commuters being

observed early in the morning and late in the afternoon in their destination city. This is

also relevant for visits to the closest cities where εi
visi t,c is small and potentially leads to

separate sequences of pings to a visited city on a given day when those are most likely part

of the same visit. Criterion (ii) basically allows for users to spend a night in a nearby city

and therefore be unobserved for that period of time. For instance, a sequence of pings in

Nairobi ending at 9pm one night followed by another starting at 7am the day after from

a user residing in Thika (approximately a 1h drive) will be considered as a single visit to

Nairobi. Similarly, criterion (iii) allows for two nights away to more distant cities without

being observed, i.e. it is sufficient to see the user at the visited city on one night and in the

morning two days after to consider that we are observing the same visit.

Having identified sets of pings belonging to individual visits to cities, we then provide

estimates for their duration. We define the lower-bound estimate for the duration of the mth

visit to city c for user i, v i
m,c = (a

i
jm,c

, ...,ai
j′m,c
), as the time elapsed between the first and last

ping of the identified sequence v i
m,c, T min(v i

m,c) = t i
j′m,c
− t i

jm,c
. The upper-bound estimate is

38Note that we still allow for multiple visits to a city in a single day in cases where the user is effectively
observed in the home location vicinity

39In this second step, we use a more precise estimate of the travel time between visited city and home
location. Driving times are calculated using Google Maps API through the R drive_time function (placement
package). Also, the time elapsed between two consecutive sequences is defined as the time between the last
ping of the first sequence and the first ping of the second sequence.
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the time elapsed between the pings preceding and following v i
m,c, so T max(v i

m,c)= t i
j′m,c+1−

t i
jm,c−1.

A.6. Algorithm to identify places visited within cities

We identify and characterize the places where visitors to cities are seen based on free and

open source data from OpenStreetMap. Geographic elements are defined using mainly

two data types. Nodes are points are typically used to map features considered without a

size (e.g. road signs, wells, statues, electric poles). Ways are ordered lists of nodes that

represent either a polyline (e.g. a road) or a polygon if they form a closed line. Metadata in

the form of tags provide attribute information on map objects such as their type, their name

or their unique identifier. OSM covers a vast array of mapable features, from buildings, to

roads, to industrial or residential zones. For each city, we construct a shapefile of polygons

defining places that we can easily characterize. By overlaying those polygons with visitors’

ping locations, we are able to gain insights into the type of places our users visit and provide

some characterization for the purpose of their trips. In what follows, we describe in full

details the procedure we adopted to construct spatial datasets of places within cities from

raw OSM data.

First, we create a standard categorization of places. Each category can be thought of as a set

of places that reflect a distinguishable purpose. For instance, a user seen in residential areas

is most likely visiting friends or relatives, whereas pings in commercial or industrial zones

are rather indicative of an individual conducting business activities. Second, we map raw

OSM features into those categories. OSM country extracts are downloaded from Geofabrik

website (download.geofabrik.de).40 Each country archive contains a set of files that classify

OSM features into different layers. We primarily used six layers: places of interest, points of

interest, buildings, places of worship, roads, and landuse.41 The procedure used to process

and assign features to our categories varies across layers depending on the nature of spatial

objects (polygons versus points) and attribute information available. We describe below

the method used to categorize raw features for each individual layer.

40The country extracts we used reflect the state of the OSM database at the date when the analysis was
conducted, i.e. 21 September, 2021.

41Other layers include natural features, traffic-related objects, railways, waterways and water bodies. None
of those contain features that are relevant to our categories (and which cannot be found in the layers that we
use).
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Places of interest. This layer contains polygon features with a well-defined “feature class”

attribute with values that can easily be mapped into our categories.

Points of interest. Points of interest are point features (i.e. nodes), also with a feature

class attribute. Many of those points actually define places which were not delineated and

entered in as polygons, but are only associated with unique point locations that roughly

correspond to the center of those hypothetical polygons. We approximate the extent of

those places by simply transforming points to square polygons of 400m2 (20m×20m) and

we incorporate these elements in our database.42

Buildings. Buildings are polygon features with two useful attributes: “type” and “name”.

They do not have a feature class attribute but can be assigned to our categories by first using

the type attribute;43 However, most building features have a missing type value and cannot

be categorized on that basis.44 For those elements, we still attempt to assign a category

by matching key words to the name attribute. For instance, one feature of the buildings

layer for Nairobi has a missing type but a name value “Parklands primary school”, which

we assign to the education category based on the presence of the word “school”.

Places of worship. This layer specifically gathers identifiable places of worship such as

cathedrals, chapels, churches, mosques and synagogues. It is comprised of both polygons

and points. Polygons are integrated as such in our dataset as elements of the “worship”

category. As with points of interest, worship points are converted into squared polygons of

400m2 which are then added to the set of worship features.

Roads. The roads layer is comprised of a comprehensive set of polylines describing road

networks. We convert those lines into road bands (i.e. road polygons) by applying a stan-

dard 12m buffer. These polygons are useful to identify pings that fall on major roads and

clearly reflect a user moving around the city by car, bus or any other transport mode. In

this respect, we only keep roads classified as “trunk”, “primary” or “secondary”. We ac-

knowledge that misalignment and road width smaller than the imposed buffer may lead to

42We acknowledge this is a relatively crude approximation but it allows us to retain as many elements as
possible with a minimal risk of overestimating the extent of places given the conservative area considered
(400m2). The resulting features are then assigned to categories of places based on the feature class attribute,
using the same correspondence matrix as for places of interest.

43The type attribute in Geofabrik extracts simply corresponds to the value of the “building=*” tag in natives
OSM elements.

44For instance, for the city of Nairobi in Kenya, the buildings layer has 109,730 features, of which 94%
have missing type value. We get comparable proportions of missing values in other cities of our sample.
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mismatches between our polygons and the actual roads. We therefore label this category as

“roads and roadsides” to account for the fact that our road bands may in fact overlap with

sidewalks.

Landuse. The landuse layer contains features with a “landuse=*” tag in the OSM database.

The value of the landuse tag is reported in a “feature class” attribute in the Geofabrik lan-

duse layer. Landuse features typically map areas (e.g. an industrial zone or a residential

neighborhood) rather than buildings but allow to usefully complement our dataset. In fact,

other layers provide information that allow to precisely characterize places at the building-

level, but they typically show large fractions of features with missing attributes that thus

remain without a category assigned. This is especially true of the buildings layer that usually

accounts for the bulk of features found in the Geofabrik archives.45 While we acknowledge

landuse elements are second-best compared to a building-level information, we argue they

still provide a useful characterization of places that users may visit. More importantly, they

significantly increase the coverage of our final dataset and thus also increase the fraction

of ping locations eventually matched to an OSM feature.

Some features are occasionally assigned several categories46 and we force each feature to

map to a unique category by establishing an order of precedence. The order of priority that

we define follows a logic of ranking categories from the most general to the more specific.

For instance, a user seen in a restaurant within a university campus is primarily considered

as having visited the university; “education” takes precedence over “food and drinks”. The

complete list of categories (and sub-categories) by decreasing order is as follows: education,

administration, justice, health, mobility, leisure, accommodation, sport, food and drinks,

shops, markets, worship, commercial zone, industrial zone, residential. We acknowledge

that this ranking is to some extent arbitrary although cases of multiple assignment are

altogether fairly rare. For instance, in Lagos, only three such cases are found out of 8,839

categorized features. Also note some features appear in multiple layers and we make sure to

remove duplicates that we identify via the unique OSM identifier assigned to each feature.

We then proceed with the characterization of locations visited by users. For each city, we

45Across the six cities that we consider in our analysis (Lagos, Abuja, Nairobi, Mombasa, Dar es Salaam,
Dodoma), the fraction of features in the buildings layer that have neither a type nor a name attribute ranges
from 76% (Dar es Salaam) to 99% (Mombasa).

46For instance, a building feature may be categorized via its name attribute which can be something like
“Somename restaurant & hotel”. The words “restaurant” and “hotel” result in the feature being classified in
both the “food and drinks” and “travel” categories.
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consider the unique set of visitor-locations over which we superimpose the constructed

OSM-based dataset of categorized places (see Table A.2).

Table A.2: Matching rates between OSM features and visitors’ locations, by city.

City Visitors Visitors matched Visitor-locations Visitor-locations matched
N % N %

Lagos 6,689 6,053 90% 965,076 642,304 66.6%
Abuja 4,086 3,293 80.6% 506,868 275,808 54.4%
Nairobi 1,583 1,090 68.9% 511,531 276,807 54.1%
Mombasa 954 587 61.5% 93,608 41,538 44.4%
Dar es Salaam 2,040 1,391 68.2% 503,085 198,976 39.6%
Dodoma 804 800 99.5% 77,823 77,064 99%
Total 16,156 13,214 81.8% 2,657,991 1,512,497 56.9%

Note: This table shows the matching rates between OSM features, visitors and locations visited
for the cities we considered in our analysis: Lagos, Abuja, Nairobi, Mombasa, Dar es Salaam and
Dodoma. We count 16,156 visitors to those six cities for a total of 2,657,991 unique visitor-locations,
of which nearly 57% are matched to an OSM feature. Overall, 82% of visitors have locations matched
to an OSM feature which means that, for 4 visitors out of 5, we are able to characterize some of the
places he visited in the host city.

B. Definition of city boundaries and regional capitals

To define city boundaries, we use urban extents from the Global Rural-Urban mapping

project v1.02 produced by Columbia University Center for International Earth Science In-

formation Network (CIESIN). The original shapefile consists of polygons delineating urban

settlements based on the point location of settlements, city-level population counts and

1995 DMSP-OLS nighttime lights to infer urban extents. Spatial extent for smaller settle-

ments that do not emit detectable light are simply modelled with a buffer proportional to

city size.47 Given that most urban extents are based 1995 nighttime lights data, we apply a

3km buffer to GRUMP polygons to account for urban growth and better capture commuting

zones. We overlay 2018 WorldPop population grids with GRUMP city polygons to obtain

city-level population estimates and, for the sake of consistency, total population counts are

also based on 2018 population grids. Cities which have boundaries less than 3km apart are

merged. As a result, we find that there are 6, 39, and 10 cities of at least 200,000 people

in Kenya, Nigeria and Tanzania respectively. Regional capitals are broadly understood as

capital cities for subdivisions of the first administrative level.48

47The full documentation is available on the dedicated webpage https://sedac.ciesin.columbia.edu/data/set/grump-
v1-urban-ext-polygons-rev02.

48More specifically, Kenya has 47 counties, Nigeria has 36 states and a Federal Capital Territory and there
are 31 regions (or mikoa) in Tanzania. Cities’ boundaries are defined according to GRUMP 3km-buffered
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C. Sample selection: Comparing respondents by device ownership

Figure C.1: Device ownership by gender.
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Note: This figure shows device ownership rates for female and male respondents. All figures use the
sample weights provided.

Figure C.2: Income and device ownership.
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Note: This figure shows the distribution of income by device ownership. All figures use the sample
weights provided. The figure shows that while there are differences in these distributions such that
those with no mobile phone tend to have the lowest incomes, the distributions overlap across a large
range of monthly incomes. This is particularly the case for individuals that have any type of mobile
phone.

Figure C.3: Education and device ownership.
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Note: This figure shows the distribution of education by device ownership. All figures use the sample
weights provided. The figure highlights that these distributions are not distinct.

polygons (more details in Appendix Section B). For the 19 regional capitals that have no boundaries defined
in the GRUMP product, we overlay the ArcGIS labelled World Imagery basemap with our users’ home loca-
tion rasters and evaluate qualitatively whether some users are found within the built-up areas of the cities
considered.
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Figure C.4: Age and device ownership.
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Note: This figure shows the distribution of age by device ownership. All figures use the sample
weights provided. The figure highlights that these distributions are not distinct.

To further understand how smartphone users differ from the rest of the population and

to interpret our data, the sectoral composition of smartphone users is relevant. The ICT

Access and Usage Survey does not ask for the sector of employment, but does ask for income

from different sources.49 We use this information to assign a main income source to each

respondent in Table C.1.50

Figure C.5: App usage of smartphone users.
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Note: This figure shows the fraction of smartphone owners using apps weekly or daily. All figures use
the sample weights provided. The figure illustrates that owners of smartphones use apps regularly.

D. Sample selection: Pairing users with DHS information

We link users’ home locations with data from the most recently available Demographic and

Health Survey (DHS) data to characterize areas where our users live: the 2014 standard

DHS in Kenya, the 2018 standard DHS in Nigeria and the 2015-2016 standard DHS in

49The precise question is “How much income do you have every month in terms of ...?" If incomes are
varying the interviewers are requested to ask for a typical amount.

50About 1.7 percent of the sample report no income from any source, and 2.4 percent of the sample report
equal amounts for two sectors. For respondents who reported to receive a pension, social grant, allowances,
scholarships, investments or other income, we use the second source of income they report. We randomly
allocate a main sector for respondents who report equal incomes from all other sources.
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Table C.1: Smartphone ownership and main source of income.

Kenya Nigeria Tanzania
(1) (2) (3) (4) (5) (6)

Rural
Salary or wage 54.9 26.7 24.3 8.4 51.6 15.0
Agricultural produce/farming 9.9 34.0 8.7 25.3 18.6 34.2
Vending/trading 3.8 1.8 11.0 15.2
Work you are doing at home 1.2 5.0 2.4 2.0 0.0 0.5
Income from your business 6.0 8.9 14.4 19.1 20.6 10.7
Property income/letting 0.0 0.1 0.0 0.4 0.0 0.4
Pension, social grant 0.0 1.4 3.3 0.9 1.7 0.6
Allowance 6.3 11.2 33.9 26.9 3.6 37.4
Scholarships 0.8 0.5 0.0 0.1
Investments 6.6 4.5 1.9 0.3
Other income 10.5 6.0 0.0 1.4 3.9 1.2
Urban
Salary or wage 50.7 47.4 23.2 16.8 40.0 29.0
Agricultural produce/farming 1.6 4.1 0.4 2.3 0.8 6.5
Vending/trading 2.1 2.4 6.1 10.3 0.9 0.6
Work you are doing at home 2.7 2.3 0.4 2.6 0.3 0.7
Income from your business 18.3 18.6 29.1 26.5 16.9 18.0
Property income/letting 0.0 0.7 1.9 1.7 0.3 1.1
Pension, social grant 0.3 0.5 3.5 2.3 0.0 1.1
Allowance 21.9 20.5 33.0 34.7 40.3 41.6
Scholarships
Investments 0.9 1.0 1.6 1.0 0.1 0.1
Other income 1.6 2.6 0.7 1.9 0.5 1.3

Note: This table shows the proportion of smartphone owners across different categories in columns
(1), (3) and (5) and we compare this to the sample averages in columns (2), (4) and (6).

Tanzania.51 DHS data are geo-referenced at the cluster level and cluster coordinates are

randomly displaced to maintain respondents’ confidentiality.52

We first classify our users within urban and rural categories based on the overlay of users’

home location with city polygons.53 We then apply two criteria to associate each user with

a set of DHS clusters. First, we select the set of DHS clusters located within a given distance

from her home location (5km for urban users and 10km for rural users). This yields a set

of DHS clusters that are comparable, in some sense, to the home location of our user. The

51More information on sampling design at https://dhsprogram.com/.
52Urban clusters are displaced by up to 2 kilometers and rural clusters by up to 5 kilometers with 1% of

rural clusters being displaced up to 10 kilometers. The displacement is restricted such that clusters stay within
the administrative 2 area where the survey was conducted.

53See Appendix Section B for details on the definition of city boundaries.
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number of these comparison clusters will be either zero or a strictly positive number of

clusters. Not all these nearby clusters will offer valid comparisons, however. For example,

a user at the outskirts of Dar es Salaam might be associated with a nearby rural cluster as

well as a number of urban clusters. To ensure that we do not falsely assign an urban cluster

as a comparison location for a rural user (or vice-versa), we add the second criterion that

the cluster’s average population density (calculated over a 5km buffer) must be within 25%

of the average population density that we have computed for the user’s home location. If

this does not hold, we drop the DHS comparison cluster.

Following that methodology, we pair 70% of our users in the high-confidence sample with at

least one DHS cluster (90% in Kenya, 66% in Nigeria, 72% in Tanzania). Some clusters are

paired to more than one user so the matched DHS sample contains a number of duplicates.

In practice, we construct a weighted subset of unique respondents within paired clusters,

with weights being equal to the number of users each corresponding cluster is matched

to. We call the subset of respondents within paired clusters the ‘’matched DHS‘’ sample.54

Unsurprisingly, unmatched users are found in low density areas where the probability of se-

lection in the DHS is lower by design - the average experienced density for unmatched users

is estimated at 2,496 inh./km2 against 8,835 inh./km2 for users with at least one paired

cluster. In order to examine potential differences between our users and the population as

a whole, we conduct t-tests for equality of means between the raw DHS and matched DHS

samples on a range of household characteristics. We produce results for rural and urban

sub-samples separately to account for both the prevalence of urban users in our sample

and the lower matching rate in low density areas, which together may lead to results being

mainly driven by the urban component of the sample. We produce t-tests comparing our

two weighted data streams, with bootstrapped standard errors robust to heteroskedasticity.

The survey weights are used for the reference DHS sample while those of the matched DHS

sample correspond to the number of users each cluster is paired with.

54Some clusters are paired to more than one user so the matched DHS sample contains a number of
duplicates. It is in fact equivalent to the weighted subset of respondents in clusters paired to at least one user,
with weights being equal to the number of users the corresponding cluster is matched to.
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E. Additional tables and figures

Figure E.1: Users by population density decile, Landscan.

(a) Kenya (b) Nigeria (c) Tanzania

Figure E.2: Fraction of users by population density deciles.

(a) Kenya - Base (b) Kenya - High (c) Kenya - Medium (d) Kenya - Low

(e) Nigeria - Base (f) Nigeria - High (g) Nigeria - Medium (h) Nigeria - Low

(i) Tanzania - Base (j) Tanzania - High (k) Tanzania - Medium (l) Tanzania - Low

Note: This figure shows the fraction of users by population density decile for the base, low-, medium,
and high-confidence samples.
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Table E.1: T-tests for equality of means between matched DHS and DHS samples, Kenya.

Variable DHS Matched DHS Difference SE p-value

All

Household size 3.99 3.08 -0.91 0.02 0.000***
Age of HH head 42.93 37.29 -5.64 0.11 0.000***

Education of HH head 8.00 10.32 2.33 0.03 0.000***
Access to electricity 0.37 0.80 0.43 0.01 0.000***

Radio 0.67 0.74 0.06 0.01 0.000***
Television 0.35 0.64 0.29 0.01 0.000***

Rooms per adult 0.66 0.66 0.00 0.00 0.522
Access to piped water 0.44 0.79 0.35 0.01 0.000***

Constructed floor 0.53 0.90 0.37 0.01 0.000***
Constructed walls 0.64 0.92 0.28 0.01 0.000***
Constructed roof 0.89 0.99 0.10 0.01 0.000***

Urban

Household size 3.28 3.02 -0.26 0.03 0.000***
Age of HH head 38.60 36.82 -1.78 0.17 0.000***

Education of HH head 9.90 10.46 0.56 0.05 0.000***
Access to electricity 0.68 0.83 0.15 0.02 0.000***

Radio 0.74 0.74 0.00 0.01 0.774
Television 0.56 0.65 0.09 0.02 0.000***

Rooms per adult 0.68 0.66 -0.02 0.01 0.001***
Access to piped water 0.71 0.82 0.11 0.02 0.000***

Constructed floor 0.82 0.92 0.10 0.01 0.000***
Constructed walls 0.86 0.94 0.07 0.01 0.000***
Constructed roof 0.98 0.99 0.01 0.00 0.002***

Rural

Household size 4.52 4.33 -0.19 0.02 0.000***
Age of HH head 46.15 46.60 0.45 0.16 0.005***

Education of HH head 6.58 7.58 0.99 0.04 0.000***
Access to electricity 0.13 0.21 0.08 0.01 0.000***

Radio 0.63 0.70 0.07 0.01 0.000***
Television 0.19 0.25 0.07 0.01 0.000***

Rooms per adult 0.64 0.67 0.03 0.00 0.000***
Access to piped water 0.24 0.25 0.01 0.02 0.464

Constructed floor 0.31 0.38 0.07 0.01 0.000***
Constructed walls 0.46 0.46 0.00 0.02 0.949
Constructed roof 0.82 0.93 0.11 0.01 0.000***

Note: This table compares the means between the overall DHS sample and the “Matched DHS”
sample (DHS clusters with which we can match smartphone app users). We show a t-test that
compares the two data sets, with bootstrapped standard errors robust to heteroskedasticity. Survey
weights are used for the reference DHS sample, while those for the matched DHS sample correspond
to the number of users each cluster is paired with.
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Table E.2: T-tests for equality of means between DHS and matched DHS samples, Nigeria.

Variable DHS Matched DHS Difference SE p-value

All

Household size 4.69 3.83 -0.86 0.02 0.000***
Age of HH head 45.29 45.17 -0.12 0.12 0.344

Education of HH head 7.43 11.52 4.10 0.04 0.000***
Access to electricity 0.60 0.98 0.39 0.01 0.000***

Radio 0.61 0.84 0.24 0.01 0.000***
Television 0.49 0.90 0.41 0.01 0.000***

Rooms per adult 0.74 0.65 -0.09 0.00 0.000***
Access to piped water 0.11 0.14 0.03 0.01 0.003***

Constructed floor 0.74 0.96 0.23 0.01 0.000***
Constructed walls 0.84 1.00 0.16 0.01 0.000***
Constructed roof 0.89 1.00 0.11 0.01 0.000***

Urban

Household size 4.44 3.83 -0.61 0.03 0.000***
Age of HH head 45.21 45.18 -0.02 0.18 0.900

Education of HH head 9.66 11.56 1.91 0.06 0.000***
Access to electricity 0.88 0.99 0.11 0.01 0.000***

Radio 0.72 0.85 0.13 0.01 0.000***
Television 0.73 0.90 0.18 0.01 0.000***

Rooms per adult 0.72 0.65 -0.08 0.01 0.000***
Access to piped water 0.14 0.14 -0.01 0.01 0.572

Constructed floor 0.89 0.96 0.08 0.01 0.000***
Constructed walls 0.95 1.00 0.04 0.01 0.000***
Constructed roof 0.98 1.00 0.02 0.00 0.000***

Rural

Household size 4.85 3.92 -0.93 0.03 0.000***
Age of HH head 45.34 44.77 -0.57 0.16 0.000***

Education of HH head 6.03 10.23 4.20 0.06 0.000***
Access to electricity 0.42 0.84 0.42 0.02 0.000***

Radio 0.54 0.67 0.14 0.01 0.000***
Television 0.35 0.77 0.43 0.01 0.000***

Rooms per adult 0.75 0.75 0.01 0.01 0.503
Access to piped water 0.09 0.14 0.05 0.01 0.000***

Constructed floor 0.64 0.96 0.32 0.01 0.000***
Constructed walls 0.77 0.98 0.21 0.01 0.000***
Constructed roof 0.83 0.99 0.16 0.01 0.000***

Note: This table compares the means between the overall DHS sample and the “Matched DHS”
sample (DHS clusters with which we can match smartphone app users). We show a t-test that
compares the two data sets, with bootstrapped standard errors robust to heteroskedasticity. Survey
weights are used for the reference DHS sample, while those for the matched DHS sample correspond
to the number of users each cluster is paired with.
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Table E.3: T-tests for equality of means between DHS and matched DHS samples, Tanzania.

Variable DHS Matched DHS Difference SE p-value

All

Household size 5.03 4.33 -0.70 0.04 0.000***
Age of HH head 45.43 41.66 -3.77 0.22 0.000***

Education of HH head 5.90 8.33 2.42 0.05 0.000***
Access to electricity 0.23 0.78 0.55 0.02 0.000***

Radio 0.52 0.66 0.14 0.01 0.000***
Television 0.21 0.65 0.44 0.02 0.000***

Rooms per adult 0.61 0.59 -0.02 0.00 0.000***
Access to piped water 0.38 0.67 0.29 0.02 0.000***

Constructed floor 0.44 0.95 0.51 0.02 0.000***
Constructed walls 0.80 0.98 0.18 0.01 0.000***
Constructed roof 0.75 0.99 0.24 0.01 0.000***

Urban

Household size 4.54 4.30 -0.24 0.07 0.001***
Age of HH head 42.22 41.56 -0.67 0.37 0.073*

Education of HH head 8.01 8.40 0.39 0.10 0.000***
Access to electricity 0.63 0.80 0.17 0.03 0.000***

Radio 0.65 0.66 0.01 0.02 0.462
Television 0.52 0.67 0.14 0.03 0.000***

Rooms per adult 0.62 0.59 -0.03 0.01 0.000***
Access to piped water 0.67 0.67 0.00 0.04 0.980

Constructed floor 0.87 0.96 0.09 0.02 0.000***
Constructed walls 0.96 0.98 0.03 0.01 0.005***
Constructed roof 0.97 0.99 0.02 0.01 0.002***

Rural

Household size 5.21 5.04 -0.16 0.05 0.002***
Age of HH head 46.61 44.40 -2.21 0.27 0.000***

Education of HH head 5.13 6.28 1.14 0.07 0.000***
Access to electricity 0.08 0.31 0.23 0.02 0.000***

Radio 0.47 0.59 0.12 0.01 0.000***
Television 0.09 0.29 0.20 0.02 0.000***

Rooms per adult 0.61 0.63 0.03 0.01 0.000***
Access to piped water 0.27 0.54 0.27 0.03 0.000***

Constructed floor 0.27 0.65 0.37 0.02 0.000***
Constructed walls 0.73 0.85 0.12 0.02 0.000***
Constructed roof 0.67 0.89 0.22 0.02 0.000***

Note: This table compares the means between the overall DHS sample and the “Matched DHS”
sample (DHS clusters with which we can match smartphone app users). We show a t-test that
compares the two data sets, with bootstrapped standard errors robust to heteroskedasticity. Survey
weights are used for the reference DHS sample, while those for the matched DHS sample correspond
to the number of users each cluster is paired with.
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Figure E.3: Fraction of days with mobility beyond 10km by density bin, for all confidence
sets.

(a) Kenya - Base (b) Kenya - Low (c) Kenya - Medium (d) Kenya - High

(e) Nigeria - Base (f) Nigeria - Low (g) Nigeria - Medium (h) Nigeria - High

(i) Tanzania - Base (j) Tanzania - Low (k) Tanzania - Medium (l) Tanzania - High

Note: This figure shows the fraction of days on which a user is seen more than 10km away from
their home location by density decile over the period of a year.

Table E.4: Mobility metrics for the high-confidence set and the overall sample.

Kenya Nigeria Tanzania

Overall High-confidence Overall High-confidence Overall High-confidence
Fraction of days with mobility >10km 0.13 0.14 0.11 0.15 0.13 0.12
Mean distance away from home 40.23 37.10 34.65 38.63 55.69 52.17

Note: This table shows the fraction of days with mobility > 10km and mean distance away from
home for different samples.

64



Table E.5: Mean fraction of days with mobility at 3 distance thresholds for 3 subsets, by
country.

Distance criterion HIGH MED LOW
0 km 39.8% 39.5% 38.8%

Kenya 10 km 13.8% 13.5% 13.2%
20 km 7.2% 7.2% 7.3%
0 km 47% 46.7% 45.9%

Nigeria 10 km 15.2% 14.9% 14.2%
20 km 8.9% 8.7% 8.4%
0 km 42.7% 42.7% 43.1%

Tanzania 10 km 11.8% 11.8% 12%
20 km 7.3% 7.4% 7.8%

Note: This table shows the fraction of days with mobility for different thresholds and samples.
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Table E.6: Average distribution of pings across visited density bins by home density bin,
transit pings included.

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 40.5% 7% 2.1% 1.2% 1.7% 1.4% 1.3% 1.6% 0.6% 0.3%
2 8.5% 28.7% 13.2% 2.4% 1.7% 1.6% 1.3% 1.4% 0.7% 0.5%
3 3.7% 8.5% 16.3% 9.3% 6% 3.1% 3% 2.1% 1.1% 0.6%
4 3.4% 3.9% 13.5% 14.2% 10.7% 6.4% 3.9% 2.1% 1.3% 0.8%
5 6% 4.5% 8.5% 11.1% 12.7% 10.2% 5% 4.2% 1.7% 0.9%
6 3.4% 2.8% 3.9% 6.2% 9.5% 15.9% 8.2% 4.8% 1.9% 1.1%
7 2.4% 1.7% 5.3% 7.3% 7.6% 12% 14.1% 8.5% 3.3% 1.9%
8 7.7% 8.8% 10.2% 10.6% 13.9% 15.1% 19.1% 22.1% 8.5% 4.2%
9 16.8% 23.3% 18.1% 28.1% 25.8% 25.6% 32.8% 39.4% 54% 37.7%
10 7.6% 10.8% 8.9% 9.6% 10.4% 8.9% 11.4% 13.8% 26.8% 52%

(a) Kenya

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 7.2% 2.1% 2% 0.8% 0.4% 0.2% 0.1% 0.1% 0.1% 0.1%
2 7.9% 10.9% 6.6% 1.5% 0.7% 0.4% 0.3% 0.2% 0.2% 0.1%
3 3.2% 7.9% 10% 8.1% 1.6% 1% 0.5% 0.3% 0.2% 0.1%
4 3.4% 4.1% 10.1% 6.5% 5.1% 2.6% 0.9% 0.5% 0.4% 0.3%
5 2.9% 5.1% 8.1% 10.2% 10.8% 5.7% 2.6% 1.4% 1% 0.6%
6 9.5% 4.4% 4.3% 10.7% 14.8% 21.4% 8.4% 3.4% 2% 1.2%
7 6.1% 12.8% 11.4% 12.4% 15.6% 21.8% 26.6% 12% 4.9% 2.3%
8 18.2% 15.6% 11.6% 13.5% 13.7% 13.7% 22.7% 30.5% 14.2% 4.8%
9 29.4% 26% 25% 24.6% 25.5% 20.9% 26.4% 40.2% 56.9% 19.1%
10 12.3% 11.1% 10.8% 11.7% 11.8% 12.4% 11.5% 11.3% 20.2% 71.5%

(b) Nigeria

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 41.3% 11.5% 2.3% 1.8% 2.3% 1% 1% 0.5% 0.3% 0.2%
2 3.2% 17.7% 7.3% 5.5% 2.1% 2% 1.2% 0.6% 0.3% 0.1%
3 1.5% 6.3% 12.9% 9% 8% 2% 1.6% 0.7% 0.3% 0.2%
4 2.1% 8.2% 10.4% 12% 10.7% 3.8% 2.4% 0.9% 0.5% 0.3%
5 1.8% 6.1% 9.6% 9.3% 9.8% 8.7% 4.3% 1.7% 0.8% 0.3%
6 3.3% 1.3% 4.2% 11.7% 13.5% 16.9% 9.8% 2.4% 1.3% 0.6%
7 3.2% 9.5% 6% 12.3% 9.6% 16.4% 25.2% 8.4% 3% 1.2%
8 12.8% 12.4% 14.7% 13.1% 13.6% 16.7% 25.1% 40.2% 15% 4.8%
9 13.7% 18.6% 20.4% 14.3% 21.4% 23% 19% 30.5% 50.6% 22.7%
10 17.1% 8.4% 12.2% 11% 8.9% 9.5% 10.5% 14% 27.8% 69.6%

(c) Tanzania

Note: These matrices show the average fraction of non-home pings of users residing in home density
bin i for visited density bin j over the period of a year.
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Table E.7: Average distribution of pings across visited density bin, by home density bin,
transit pings excluded.

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 40% 7.1% 2.1% 1.2% 1.5% 1.4% 1.3% 1.5% 0.6% 0.3%
2 8.2% 28.5% 13.2% 2.3% 1.6% 1.5% 1.3% 1.3% 0.7% 0.5%
3 3.5% 8.6% 16.3% 9.1% 5.9% 3% 3% 2% 1.1% 0.6%
4 3.3% 3.9% 13.3% 14.3% 10.8% 6.2% 3.8% 2% 1.2% 0.8%
5 6% 4.5% 8.5% 11.2% 12.3% 10.2% 4.9% 4.1% 1.7% 0.9%
6 3.4% 2.7% 3.7% 6.2% 9.6% 15.8% 8.2% 4.7% 1.9% 1.1%
7 2.8% 1.6% 5.3% 7.2% 7.4% 11.8% 14.1% 8.4% 3.3% 1.9%
8 7.4% 8.7% 10% 10.4% 13.7% 15.1% 18.9% 21.9% 8.5% 4.2%
9 17.2% 23.6% 18.2% 28.5% 26.4% 26% 33.2% 40% 54.3% 37.9%
10 8.1% 10.8% 9.2% 9.7% 10.7% 9% 11.4% 14% 26.9% 52.1%

(a) Kenya

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 7% 2.1% 1.9% 0.8% 0.4% 0.2% 0.1% 0.1% 0.1% 0%
2 8.2% 10.8% 6.7% 1.5% 0.7% 0.4% 0.3% 0.2% 0.1% 0.1%
3 3.3% 7.9% 10.1% 8.2% 1.6% 0.9% 0.5% 0.3% 0.2% 0.1%
4 3.4% 4.1% 10.1% 6.7% 5.1% 2.6% 0.9% 0.5% 0.4% 0.2%
5 2.8% 5.1% 8.1% 9.9% 10.8% 5.6% 2.6% 1.4% 1% 0.5%
6 9.6% 4.4% 4.3% 10.5% 14.8% 21.4% 8.4% 3.4% 2% 1.2%
7 6% 12.7% 11.4% 12.3% 15.5% 21.8% 26.6% 12.1% 4.8% 2.3%
8 18.2% 15.6% 11.6% 13.6% 13.8% 13.8% 22.7% 30.6% 14.2% 4.8%
9 29.3% 26.1% 24.8% 24.8% 25.5% 20.9% 26.4% 40.2% 57% 19.1%
10 12.2% 11.1% 10.9% 11.8% 11.8% 12.4% 11.5% 11.3% 20.2% 71.7%

(b) Nigeria

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 41.5% 11.8% 2.3% 1.8% 2.3% 1% 1% 0.5% 0.3% 0.2%
2 3.1% 17.3% 7.3% 5.5% 2.1% 2.1% 1.1% 0.5% 0.2% 0.1%
3 1.5% 6.1% 13% 8.9% 7.9% 1.9% 1.5% 0.6% 0.3% 0.2%
4 2% 8% 10.4% 12% 10.6% 3.8% 2.3% 0.7% 0.4% 0.3%
5 1.7% 6.3% 9.6% 9.4% 9.6% 8.6% 4.2% 1.6% 0.7% 0.3%
6 3.1% 1.1% 4.2% 11.6% 13.3% 16.7% 9.6% 2.2% 1.2% 0.5%
7 3% 9.3% 5.9% 12.4% 9.5% 16.2% 25.1% 8.2% 2.8% 1.2%
8 12.8% 12.8% 14.7% 13.1% 13.8% 16.5% 25.1% 40.3% 15% 4.7%
9 14.1% 17.9% 20.5% 14.3% 22.1% 23.6% 19.3% 30.9% 51% 22.9%
10 17.2% 9.6% 12.2% 11.1% 8.7% 9.6% 10.8% 14.4% 28% 69.8%

(c) Tanzania

Note: These matrices show the average fraction of non-home pings of users residing in home density
bin i for visited density bin j over the period of a year, excluding transit pings.
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Table E.8: Share of users by home bin-visited bin pair, transit pings excluded.

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 71.2% 32.9% 14% 11.1% 11.4% 13.2% 12.1% 13.9% 8.7% 5.6%
2 43.2% 60.8% 37.7% 24.9% 18.9% 17.1% 17.2% 19.3% 13.3% 9.6%
3 25.2% 45.6% 55.1% 41.1% 34.9% 28.4% 26.5% 24.1% 17.6% 13.2%
4 34.2% 32.9% 51.3% 56.6% 46.2% 37.7% 33.9% 27.5% 22.1% 16.5%
5 29.7% 25.3% 42.3% 51.5% 52.4% 48.3% 37.5% 34.3% 24.1% 17.8%
6 27% 24.7% 28.7% 46.1% 46.2% 54.6% 46.8% 37.3% 25.5% 18.4%
7 27% 27.8% 34.7% 42.4% 43.8% 55.8% 57.7% 47.5% 34.1% 23.6%
8 42.3% 44.3% 45.3% 55.9% 56.8% 60.8% 68.1% 69.3% 50.3% 35.4%
9 55.9% 53.8% 53.6% 65.3% 65.1% 67.8% 72.1% 79.8% 89.8% 76%
10 32.4% 36.1% 30.2% 41.4% 37.3% 40.1% 45.4% 51.3% 69.9% 88.6%

(a) Kenya

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 35.7% 18.8% 18.8% 6.3% 5.7% 3.5% 2.9% 2.7% 2.2% 1.3%
2 23.8% 31.9% 35% 12.2% 12.1% 8.3% 6.2% 5.5% 4.6% 2.8%
3 26.2% 29% 40.6% 31.6% 18% 12.5% 9.6% 8% 6.5% 4.2%
4 31% 26.1% 44.9% 35% 31.7% 21.7% 14.1% 11.3% 10.4% 6.4%
5 23.8% 33.3% 42.7% 45.3% 50.6% 37.1% 26.2% 20.2% 19.4% 14.6%
6 33.3% 33.3% 36.8% 53% 59.5% 68.6% 45.2% 30.9% 26.2% 17%
7 42.9% 55.8% 49.6% 52.8% 63.6% 69.9% 75.9% 55.9% 39.3% 25.1%
8 71.4% 58% 54.3% 58.4% 61.1% 59.6% 72.5% 81% 63.4% 37.6%
9 76.2% 61.6% 62.8% 62.5% 66.8% 63.9% 68.3% 81.1% 91.4% 64.5%
10 42.9% 44.2% 41.9% 44.5% 49.9% 47.7% 46.7% 46.7% 61.7% 95.3%

(b) Nigeria

Home density bin
1 2 3 4 5 6 7 8 9 10

Visited
density

1 73.6% 33.8% 18.2% 14.3% 13.4% 8.5% 10.2% 7.9% 6.5% 3.6%
2 18.7% 50% 39.1% 27.9% 21.2% 13.1% 13% 9.7% 7.1% 4.1%
3 11% 38.2% 43.6% 38.8% 29% 18.3% 13.9% 11% 8.6% 5.1%
4 13.2% 35.3% 40% 40.1% 37.8% 22.4% 19.3% 13.1% 10% 6.4%
5 16.5% 29.4% 42.7% 39.5% 36.4% 41.4% 25.6% 17.8% 12.2% 7%
6 18.7% 22.1% 35.5% 40.8% 45.2% 49.6% 41.1% 22.4% 15.9% 9.3%
7 29.7% 38.2% 42.7% 46.3% 40.6% 53% 64% 40.8% 25.3% 14.9%
8 42.9% 42.6% 50% 46.9% 50.2% 54.8% 61.9% 82.3% 56.5% 33.2%
9 40.7% 50% 54.5% 48.3% 55.3% 58.9% 55.8% 68.5% 88.4% 66%
10 39.6% 35.3% 30.9% 38.1% 31.8% 38.3% 39.5% 44.7% 64.2% 93.4%

(c) Tanzania

Note: These matrices show the proportion of users residing in home density bin i that are seen at
least once in visited density bin j over the period of a year, transit pings excluded.
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Table E.9: Origin of visitors in top 5 cities.

Kenya
Nairobi Mombasa Nakuru Eldoret Kisumu

(1,699 visitors) (953 visitors) (891 visitors) (448 visitors) (437 visitors)
Origin Visitors Origin Visitors Origin Visitors Origin Visitors Origin Visitors

Mombasa 20.2% Nairobi 68.4% Nairobi 62.5% Nairobi 51.3% Nairobi 57%
Nakuru 4.9% Nakuru 1.5% Eldoret 3.1% Mombasa 3.3% Mombasa 4.6%
Kisumu 4.1% Kisumu 0.6% Mombasa 2.9% Kisumu 2.9% Eldoret 2.3%
Eldoret 4.1% Eldoret 0.5% Kisumu 2% Nakuru 2.2% Nakuru 1.4%
Garissa 1.1% Garissa 0.1% Garissa 0.1% - - - -

Non-urban 65.6% Non-urban 28.9% Non-urban 29.3% Non-urban 40.2% Non-urban 34.8%

Nigeria
Lagos Kano Ibadan Abuja Kaduna

(5,258 visitors) (807 visitors) (2,916 visitors) (3,232 visitors) (1,296 visitors)
Origin Visitors Origin Visitors Origin Visitors Origin Visitors Origin Visitors

Abuja 21.9% Abuja 43.5% Lagos 68.7% Lagos 47% Abuja 54.9%
Ibadan 13.1% Lagos 18.5% Abuja 6.6% Kaduna 8.8% Lagos 12%

Abeokuta 7.4% Kaduna 11% Abeokuta 3.8% Port Harc. 5.3% Kano 10.3%
Shagamu 6.4% Maiduguri 2.9% Ilorin 2.9% Kano 5.2% Zaria 5.9%

Port Harc. 6.4% Zaria 2.9% Shagamu 2.7% Jos 3.2% Katsina 1.7%
Other urb. 5.7% Other urb. 2.5% Other urb. 2.4% Other urb. 2.6% Other urb. 1.2%
Non-urban 39.1% Non-urban 18.8% Non-urban 12.9% Non-urban 27.9% Non-urban 13.9%

Tanzania
Dar Es Salaam Zanzibar Mwanza Arusha Mbeya
(1,850 visitors) (743 visitors) (704 visitors) (859 visitors) (395 visitors)
Origin Visitors Origin Visitors Origin Visitors Origin Visitors Origin Visitors

Arusha 9.7% Dar Es Sa. 53.3% Dar Es Sa. 32.4% Dar Es Sa. 39.5% Dar Es Sa. 38.2%
Zanzibar 8.9% Arusha 4% Arusha 3.1% Moshi 10.4% Mwanza 2.8%
Mwanza 6.7% Mwanza 0.8% Dodoma 1.3% Mwanza 3% Arusha 2.3%

Morogoro 6% Moshi 0.8% Mbeya 0.9% Dodoma 2.3% Dodoma 1.8%
Dodoma 4.3% Dodoma 0.8% Moshi 0.7% Zanzibar 2.2% Morogoro 1.5%

Other urb. 3.5% Other urb. 0.3% Other urb. 0.6% Other urb. 1.6% Other urb. 0.8%
Non-urban 61% Non-urban 40% Non-urban 61.1% Non-urban 41% Non-urban 52.7%

Note: This table shows the origin of visitors for the five most populated cities. Origin and destination
city boundaries are defined using 3km-buffered GRUMP polygons. Visitors are defined as being seen
at least once in a location over the year. "Non-urban" refers to locations outside boundaries of cities
with 200,000 or more residents. "Other urb." refers to all cities that are not in the top 5 origin cities.
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Table E.10: Top 5 destinations of residents from top 5 cities.

Kenya
Nairobi Mombasa Nakuru Eldoret Kisumu

(11,290 residents) (1,683 residents) (413 residents) (340 residents) (258 residents)
Destination Residents Destination Residents Destination Residents Destination Residents Destination Residents

Mombasa 5.8% Nairobi 20.4% Nairobi 20.1% Nairobi 20.3% Nairobi 27.1%
Nakuru 4.9% Nakuru 1.5% Mombasa 3.4% Nakuru 8.2% Nakuru 7%
Kisumu 2.2% Kisumu 1.2% Eldoret 2.4% Kisumu 2.9% Eldoret 5%
Eldoret 2% Eldoret 0.9% Kisumu 1.5% Mombasa 1.5% Mombasa 2.3%
Garissa 0.3% Garissa 0.1% Garissa 0.2% Garissa 0.6% - -

Non-urban 31.4% Non-urban 24.4% Non-urban 37% Non-urban 38.2% Non-urban 51.9%

Nigeria
Lagos Kano Ibadan Abuja Kaduna

(35,957 residents) (1,496 residents) (2,555 residents) (7,988 residents) (1,303 residents)
Destination Residents Destination Residents Destination Residents Destination Residents Destination Residents

Shagamu 5.9% Abuja 11.2% Lagos 26.9% Lagos 14.4% Abuja 21.8%
Ibadan 5.6% Kaduna 9% Shagamu 9.2% Kaduna 8.9% Zaria 10.4%
Abuja 4.2% Lagos 6.7% Abeokuta 3.8% Kano 4.4% Kano 6.8%

Abeokuta 2.8% Zaria 5.9% Oshogbo 3.5% Zaria 3% Lagos 5.8%
Benin City 2.1% Katsina 2.2% Abuja 3.3% Port Harc. 2.7% Katsina 2.2%
Other urb. 14.1% Other urb. 12.1% Other urb. 20.8% Other urb. 33.6% Other urb. 19.1%
Non-urban 20.9% Non-urban 21.9% Non-urban 25.5% Non-urban 32.2% Non-urban 28.2%

Tanzania
Dar Es Salaam Zanzibar Mwanza Arusha Mbeya

(10,370 residents) (832 residents) (963 residents) (1,253 residents) (439 residents)
Destination Residents Destination Residents Destination Residents Destination Residents Destination Residents
Morogoro 4.9% Dar Es Sa. 19.8% Dar Es Sa. 12.9% Moshi 14.9% Dar Es Sa. 14.6%
Zanzibar 3.8% Arusha 2.3% Dodoma 3.6% Dar Es Sa. 14.3% Morogoro 3.4%
Dodoma 3.7% Dodoma 1.4% Arusha 2.7% Dodoma 2.9% Dodoma 3%

Arusha 3.3% Tanga 1.3% Morogoro 1.7% Zanzibar 2.4% Arusha 2.5%
Moshi 2.4% Morogoro 1% Moshi 1.3% Mwanza 1.8% Mwanza 1.4%

Other urb. 5.9% Other urb. 0.7% Other urb. 2.4% Other urb. 3.9% Other urb. 1.1%
Non-urban 26.4% Non-urban 36.5% Non-urban 37.8% Non-urban 42.9% Non-urban 36.4%

Note: This table shows the destinations of residents for the five most populated cities. Origin and
destination city boundaries are defined using 3km-buffered GRUMP polygons. Visitors are defined
as being seen at least once in a location over the year. "Non-urban" refers to locations outside
boundaries of cities with 200,000 or more residents. "Other urb." refers to all cities that are not in
the top 5 origin cities.

Figure E.4: Differences in flows between locations, Kenya
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Note: This figure shows how the distributions of ln(Vk(1,2)/Nk1
∗ 1000) (dashed line) and

ln(Vk(2,1)/Nk2
∗1000) (solid line) vary as we change the ratio of populations at origin and destina-

tion. We multiply the number of visits per resident by 1000 and take logs for expositional purposes.
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