CO₂ emission transfers associated with trade

Misato Sato, Assistant Professor, London School of Economics

Centre for Climate Change Economics and Policy

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

Production vs Consumption accounting

- Production/ territorial emissions basis of national carbon accounting, diplomacy and policies
 - Assumed this best reflects principles of state sovereignty over regulating emissions
- Wedge driven between territorial and 'carbon footprints' or 'consumption-based emissions'
 - Globalisation and surge of international trade and extended supply chains
 - Share of CO_2 emissions associated with traded goods grown to 25% in 2011.

The challenge is persuasive

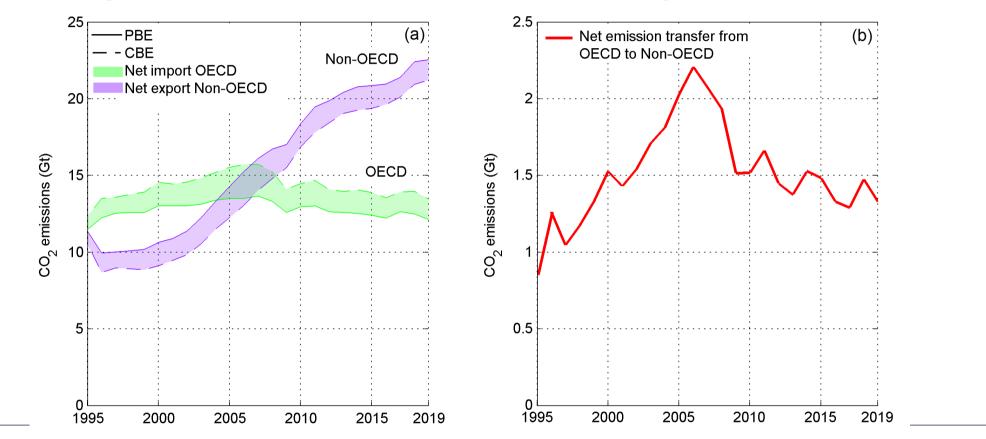
- CO₂ emission transfers largely ignored by governments to date
 - Particularly the issue of potentially shared responsibility
 - 'outsourcing' manufacturing could be claimed as emission reductions and presented as improving efficiency - questions legitimacy of claimed national emission reductions
- Climate policy design has to navigate enduring difference in ambition and instruments between countries and the fear of carbon leakage – companies moving production abroad to escape regulation
 - Most relevant emission- intensive sectors are largely exempt from significant policy costs e.g. though free allocation in emissions trading
 - Incompatible with deep decarbonization
 - Achieving net zero carbon imply potential costs exceeding €100/tCO₂

How to attribute responsibility over emissions associated with trade and how to measure it

CBE = PBE - CFE + CFI

Net Transfers = CBE - PBE = CFI – CFE

- CBE = consumption based emissions
- PBE = production based emissions
- CFE = carbon footprint of exported products
- CFI = carbon footprint of imported products



Carbon footprint measurement and uncertainty

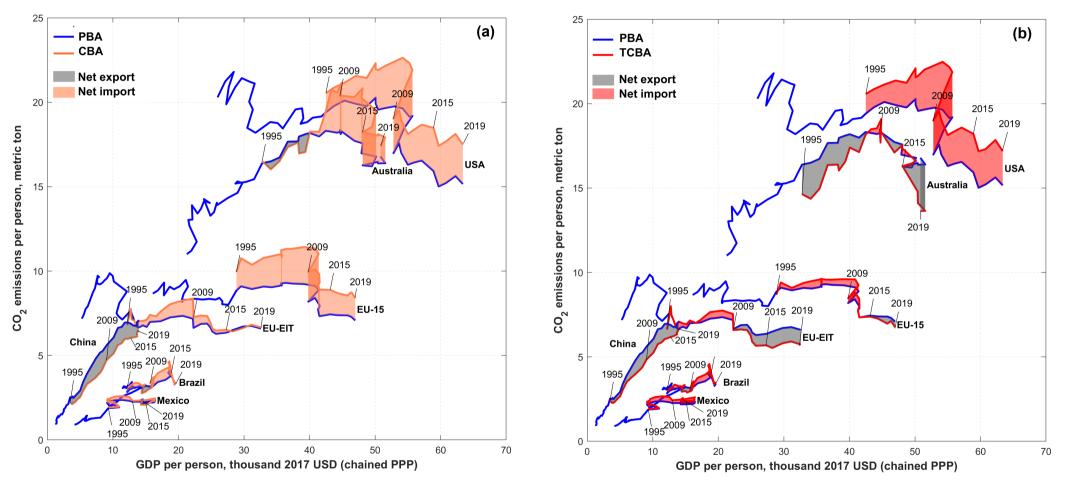
		Approaches	Uncertainty
Top down	Country	Global environmentally extended MRIO, Leontief demand model	10% (Rodrigues et al 2018, Dietzenbacher et al 2020)
	Sector	Disaggregated MRIO e.g. EXIOBASE 3.3	Ś
	Firm/supply chain	 decomposition of the traditional Leontief model multiplying the final demand matrix with an emission multiplier matrix and an index of sectoral presence of MNEs in each country 	Ś
Bottom up	Product	life-cycle assessment approachesMaterial content	Ś

Historical increase in emission transfers from developing to developed countries reversed in the last 15 years

Trends in production-based (solid line) and consumption-based (broken line) CO₂ emissions and (b) net transfers between OECD and non-OECD countries, 1995-2019. Update of figure in Wood et al. (2020), in Grubb et al (forthc ARER)

Factors behind the decline in net south-north transfers

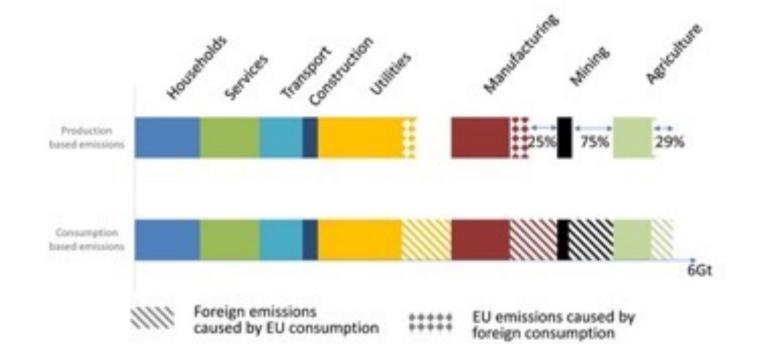
Structural:


- Slowdown in growth of global trade after financial crisis
- Reduction in emissions intensity of traded goods since 2005
 - China: since 2007, emissions decoupling effect due to declining emissions intensity of production processes and shifts to production structure towards higher value added products.
- Growth of exports to developing countries

Short term:

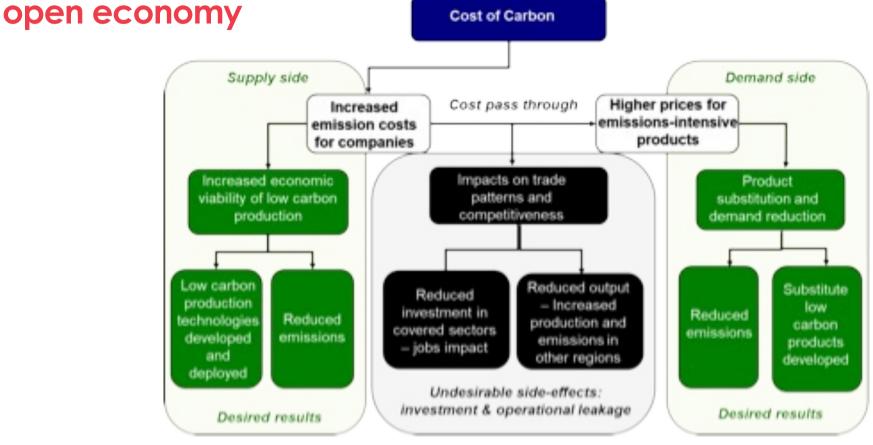
- recession hit OECD imports particularly hard indeed, the reduction in consumption
- emissions exceeded that in production emissions in the US and Europe while Non-OECD consumption emissions growth was largely unaffected.
- Declining transfers also observed between developing countries

Evolution of PBE and CBE in terms of 'development pathways'


Production- and consumption-based CO₂ emissions per capita of selected countries as a function of GDP per capita (b) using technology-adjusted consumption-based accounting (TCBA) Source: Grubb et al (forthcoming, ARER)

3 main drivers for net emission transfers

- 1. Trade balance
 - US trade deficit
- 2. Energy mix in a region compared to its trade partners
 - **EU** low carbon energy mix
 - China dirty energy mix
- 3. Position of the region in the global division of labour
 - **EU** specialising in services or light industries
 - **Russia** specialising in resource/ heavy industry



Utilities, manufacturing, mining and agriculture responsible for the bulk of emission transfers

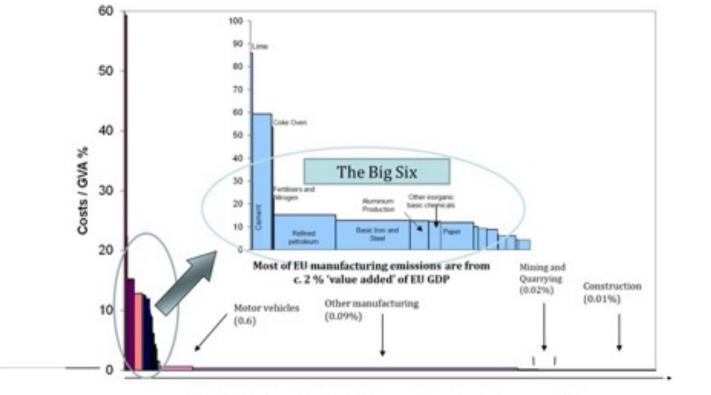
Production vs Consumption emissions by sector for the EU: internal and external attribution, Source Wood et.al. 2020 in Grubb et al (forthcoming, ARER)

Leakage – undesirable side effect of mitigation policies in an

Adapted from Grubb (2014, Planetary Economics)

Empirical evidence on leakage so far limited

Basic materials sectors – mixed/ partial cost pass through ability


- Limited empirical evidence of carbon leakage e.g. from the EU ETS
 - presence of free allocation
 - historically low carbon prices
- Investment leakage
 - Relocation limited due to high fixed plant costs and immobile physical capital
 - higher domestic costs tend to deter new investment, but harder to detect.

Electricity

• Low leakage risk except in jurisdictions – high cost pass thorough ability with significant cross border interconnection capacity and trade e.g. California

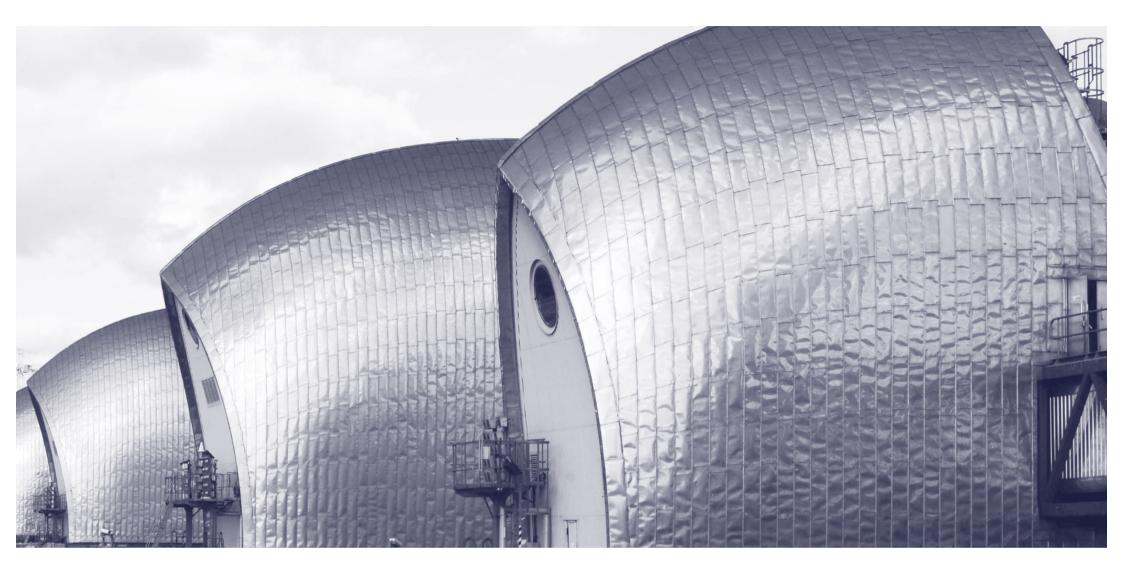
Carbon leakage risk primarily concern energy/emissions intensive, trade-exposed (hence EITE) basic materials sectors

Basic materials account for 2/3 of industrial emissions or ¹/₄ of global emissions (including indirect emissions).

41% of EU 'value added' (GDP) in manufacturing industry + utilities

Potential impact of carbon cost on EU industry sectors, and their share of economy, 2011, Grubb (2014)

Looking ahead


- A consumption-led perspective gaining strong traction but made limited progress in public policy
- Key barriers
 - Carbon footprint measurement and data issues \rightarrow significant progress made
 - International equity issues \rightarrow largely unsolved
- Addressing carbon transfer via imports will become increasingly important for reducing national carbon footprints, for high climate ambition countries.
- Complex minefield of conflicting perspectives and domestic & international interests
- ightarrow Solution likely to be inherently evolutionary, testing options and 'feeling the stones'
- \rightarrow Both pricing and non-pricing approaches needed

m.sato1@lse.ac.uk

