GENERAL AGREEMENT ON
 TARIFFS AND TRADE

L/4523/Add. 16
1 March 1979
Limited Distribution

STATE TRADING
 ITotifications Pursuant to Article XVII:4(a)
 UNITED STATES

I. Enumeration of State-trading enterprises

(A) Department of Energy: by-product, source, and special nuclear material as defined in 42 USC 2014, uranium enriching services, and heavy water.
(B) United States Department of the Interior - Bureau of Mines: helium.
(C) General Services Administration: national stockpile of critical and strategic materials.
(D) Department of Agriculture - Commodity Credit Corporation: dairy and miscellaneous agricultural product.
II. Reason and purpose for introducing and maintaining State-trading enterprises
A. Department of Energy

The provisions of the Atomic Energy Act of 1954, as amended, include Government control of the possession: use and production of atomic energy and special nuclear material, whether owned by the Government or others, so as to encourage the development and utilization of atomic energy for peaceful purposes to the maximum extent consistent with the common defense and security and with health and saiety. 42 USC Chapter 20.
B. Bureau of Mines

Historically, the Bureau of Mines began the production of helium during World Var I, to supply a non-flammable lifting eas for lighter-than-air craft. Production continued in order to supply military and defense needs and, more recently, governmental space, atomic energy, and other helium-using programmes.

By the Act of 13 September 1960 ("The Helium Act:", 74 Stat. 918; P.L. 86-777), "The Secretary is euthorized to maintain and operate helium production and purification plants together with facilities and accessories thereto; to acouire, store, transport, sell, and conserve helium-bearing natural gas, and helium-gas mixtures, to conduct exploration for and production of helium on and from the land acquired, leased, or reserved; and to conduct or contract with public or
private parties for experimentation and research to discover helium supplies and to improve processes and methods of helium production, purification, transportation, liquefaction, storage, and utilization (The Helium Act, Sec. 4.)
C. General Services Administration

The stockpile of strategic and critical materials is maintained for the sole purpose of assuring sufficient materials to fulfill national requirements in an emergency. In order to meet this goal and minimize program cost, the requirements for each stockpiled material are continually re-evaluated.

These activities are carried out under the authority of the Strategic and Critical Materials Stock Piling Act (50 U.S.C. 98 et seq.). Under Presidential Executive Order 11725, the Administrator, General Services Administration, was delegated reponsibility for the execution of this law. The Administrator redelegated these functions to the Director of the Federal Preparedness Agency (FPA). FPA determines what materials are strategj.c and critical and sets the quality and quantity of such materials which shall be stockpiled to meet national security needs.
D. Department of Agriculture

Price support programs for agricultural commodities under the Agricultural Act of 1949 permit government acquisition of surplus commodities during times of distressec market prices. Section 407 of the Act permits Government sales from stocks of such conmodities at times when their market price exceeds support levels by specified amounts. In addition, the commodity Credit Corporation is charged, in determining its sales policies for basic agricultural commodities or nonbasic commodities, with the consideration of policies with respect to prices, terms and conditions that will not deter or discourage manufacturers, processors and dealers from acquiring and carrying normal inventories of the commodity.

III. Description of the Functioning of the StateTrading Enterprises

A. Department of Energy */

Byproduct Material: The DOE is authorized to distribute byproduct material to nations pursuant to an agreement for cooperation or, upon determination that such activity will not be inimical to the interests of the U.S., to persons outside the U.S. at charges as would be charged for the material if it were distributed within the U.S. The charge for byproduct material must be established on an equitable basis which will provide reasonable compensation to the Government, and will not discourage the use of the material or the development of sources of supply independent of DOE and will encourage research and development. (42 U.S.C. Sec. 2112)

[^0]Source Material: The DOE is authorized to distribute source material abroad pursuant to the terms of an agreement for cooperation or, upon determination that such activity will not be inimical to the interests of the U.S. DOE's distribution authority, other than under an export license issued by the NRC, is limited to three metric tons per year per recipient. (42 U.S.C. Sec. 2094)

Special Nuclear Material: The DOE may distribute special nuclear material abroad pursuant to the terms of an agreement for cooperation at not less than the DOE's published charges applicable to the domestic distribution of such material, except certain limited quantities of such material may be distributed (in the manner provided by the Atomic Energy Act) without charge for research on peaceful uses, for medical therapy and for international cooperative programs. DOE's authority to distribute special nuclear material other than under an export license granted by the NRC is limited to l) specified small quantities which are contained in laboratory samples, medical devices and monitoring, or other instruments or, 2) the distribution of which is needed to deal with an emergency situation in which time is of the essence. DOE may sell special nuclear material to qualified applicants within the U.S. at reasonable prices established on a nondiscriminatory basis which will provide reasonable compensation to the Government. **

[^1]Uranium Enriching Services: The Atomic Energy Act of 1954, as amended, allows DOE to enter into contracts with domestic and foreign entities for toll enrichment (uranium feed is provided to DOE and a lesser quantity of enriched material is delivered.) For this service, DOE levies an enrichment services charge established in accordance with and within the period of an agreement for cooperation entered into under Section 123 of the Atomic Energy Act, as amended (42 U.S.C. Sec. 2153).

Heavy Water: DOE is authorized to operate heavy water production facilities and to sell available material to both domestic and foreign customers at published prices based upon the principle of full cost recovery.

Imports: No significant import purchases are being made by DOE at present.

B. The Bureau of Mines

The Bureau of Mines operated one large helium extraction plant. It is one of several producers of highpurity helium in the United States, the others being private companies having no connection with the Government's helium program.

Bureau of Mines sales of helium are primarily to other governmental (Federal) agencies, although the Bureau is willing to sell helium to non-goversmental customers.

The Bureau of Mines also stores helium as a conservation measure to "provide ... a sustained supply of helium which, together wich supplies available or expected to become available otherwise, will be sufficient to provide for essential Government activities." (The Helium Act, Sec. 15.)

The Bureau of Mines will sell helium to private distributors for resale for consumption or export. The Bureau itself does not engage in the export or import of helum.
C. General Services Administration

Stockpile goals are keyed to the first three years of a war of indefinite duration. These goals are not static but flexible targets which depend upon policy guidance, economic, strategic, technological, and political factors. The planning process provides for periodic review of Presidential stockpile guidance
and for continuous updating in the computation of goals. Stockpile goals are implemented through an Annual Materials plan of acquisitions and disposals which will vary in accordance with marketing, strategic and budget considerations.

Procurement of materials for which the stockpile goals are not yet fulfilled is made through open bidding, without discrimination as to foreign or domestic bidders. As materials are usually stockpiled because they are not available in the United States in adequate supplies in wartime, most purchases are from foreign sources.

Disposal of materials in excess of stockpile goals must be conducted in a manner designed to protect the United States against avoidable loss on the sale of the materials, and to protect producers, processors and consumers against avoidable disruption of their usual markets.

D. Department of Agriculture

The Commodity Credit Corporation stocks are an integral part of the Government's price support program for certain basic agricultural commodities, and the quantity and quality of these stocks varies with market conditions for each product. Sales from CCC stocks cannot be made at prices less than five per centum above the current support price for each commodity, plus reasonable carrying charges. For upland or extra long staple cotton, sales for unrestricted use cannot occur at less than 15 per centum above the current support price; for rice, at less than 105 per centum; for wheat, corn grain sorghum, barley, oats and rye, at less than 150 per centum of the current national average loan rate. Exceptions to the above are possible if the Secretary of Agriculture deems it in the public interest to make available farm commodities for use in relieving distress from major disasters or economic causes, provided the President finds that such use will not displace or interfere with normal marketing of agricultural commodities.

Sales from CCC stocks can be made for export use or for unrestricted use. No sales from stocks designated for export only occurred during 1975-1977. Stocks sold for unrestricted use may be exported or used domestically; no record is kept of the destination of these sales.

The Commodity Credit Corporation does not import any commodities.

IV. Statistical Information

A. DOE

$\$$ - in millions

Fiscal Year	Nuclear Materials	Heavy Water	Isotopes	Uranium Enriching Services	Misc. Products	Total	
Sales	$\$ 26.1$	16.6	$\$ 1.2$	$\$ 19.6$	$\$.7$	$\$ 64.2$	
Value of Material On Lease at $6 / 30 / 69$	36.7	8.3					

FY 1970

Sales	15.0	34.3	1.3	24.7	1.0	76.3
Value of Material on Lease at $6 / 30 / 70$						

FY 1971

Sales	14.2	42.8	1.2	72.2	.8	131.2
Value of Material on Lease at $6 / 30 / 71$						

FY 1972

Sales	48.0	14.5	2.7	154.1	1.3	220.6
Value of Material on Lease at $6 / 30 / 72$	442.7	11.5	3.8			
FY 1973						
Sales	57.2	34.8	3.2	246.2	.7	342.1
Value of Material On Lease at $6 / 30 / 73$	381.0	10.1	3.4			

Fiscal Year	Nuclear Materials	Heavy Water	Isotopes	Uranium Enriching Services	Misc. Products	Total
FY 1974	25.0	5.2	3.2	541.4	. 6	576.3
Value of						
Material						
on Lease at						
6/30/74	105.0	10.7	3.7			119.4

FY 1975

| Sales | 23.7 | 211.3 | 237.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Value of
Material
on Lease at
6/30/75
85.4
10.6
3.8
99.8

FY 1976 (July 1, 1975 - September 30, 1976)

Sales	56.9	.6	3.8	634.1	1.72	697.1
Value of Material on Lease at	56.9	10.6	3.4			70.9

FY 1977

Sales	29.5	2.7	3.9	688.4	1.0
Value of					
Material On Lease at $9 / 30 / 78$					

B. Bureau of Mines:

Bureau of Mines production of helium during the last three years:

$$
\begin{aligned}
& 1974 \text { - } 308 \text { million cubic feet } \\
& 1975 \text { - } 336 \text { million cubic feet } \\
& 1976 \text { - } 297 \text { million cubic feet }
\end{aligned}
$$

TABLE 1

GOVERNMENT INVENTORIES OF STRATEGIC AND CRITICAL MATERIALS

March 31, 1978

	Acquisition Cost	Market Value ${ }^{\text {1 }}$
TOTAL INVENTORIES		
Excluding Unshipped Sales		\$8,566,164,400
Reserved for Goals		\$4,564,940,300
Excess to Goals		3,901,224,100
Inciuding Unshipped Sales	\$3,699,117,800	\$9,012,773,500
Reserved for Goals	\$2,169,592,100	\$4,664,940,300
Excess to Goals	1,529,525,700	4,347,833,200
By Inventory		
National Stockpile	\$2,507,987,300	\$7,012,289,500
Supplemental Stockpile	1,050,650,300	1,886,701,600
Defense Production Act	140,480,200	113,782,400

[^2]TABLE 2

INVENTORJES, GOALS, EXCESSES OR DEFIGTS AND BALANCE OF DISPOSAL AUTHORIZATIONS OF BASIC STOCKPILE MATERIALS

March 31, 1978
Market Value - Milions of Dollars)

Commodity Unit	Coal'	Total Inventory' ${ }^{2}$	Market Value ${ }^{3}$	Excess Adjusted for Offset ${ }^{\text {a }}$	Deficit Adjurted for Offset	Balance of Disposal Authorization
1. Alumina ST	11,532,000	0	30	0	5,018,567 ${ }^{2}$	0
2. Ahuminum ST	0	1,684	1.8	0^{2}	0	0
3. Aluminum Oxide, Abrasive Grain . . ST	75,000	50.905	36.6	0	$0^{\text {b }}$	0
4. Aluminum Oxide, Fused, Crude ... ST	147.615	249,403	45.0	74,079 ${ }^{\text {b }}$	0	0
S. Antimony ST	20,130	40,730	146.4	20,600	0	0
6. Asbestos, Amosite ST	26,291	42,533	14.5	16,242	0	16,242
7. Asbestos, Chrysotile ST	0	10,956	5.0	10,956	0	0
8. Bauxize, Metal Grade. JетаісаLDT	523,000	8.858.881	213.9	. $0^{\text {a }}$	0	0
9. Bauxite, Metal Grade, Surinam \qquad LDT	0	5,299,597	153.2	$0^{\text {a }}$	0	0
10. Bauxite, Refractory LCT	2,083,000	174,599	24.4	0	1,908,401	0
11. Beryl Ore (11\% BeO) ST	0	17,986	8.1	$0{ }^{\text {c }}$	0	0
12. Beryllium Copper Master Alloy . . . ST	16,710	7,387	48.4	0	$0^{\text {c }}$	0
13. Berybium Metal ST	895	229	34.4	0	$549{ }^{\text {c }}$	0
14. Bismuth LB	771,000	2,081,298	7.3	1,310,298	0	0
15. Cadmium LB	24,701,000	6,328,622	15.1	0	18,372,378	0
16. Castor O1, Sebacic Acid LB	0	5,009,697	6.8	5,009,697	0	0
17. Chromite, Chemical Grade Ore . . . SDT	734,000	242,413	15.0	0	491,587	0
18. Chromite, Metallugical Grade Ore SDT	2,550,000	2,484,281 ${ }^{\text { }}$	281.9	0	$0{ }^{\text {d }}$	0
19. Chromite, Refractory						
Grade Ore SDT	642,000	351,414	32.9	0	250,586	0
20. Chromium, Ferro, High Carbon . . ST	236,000	402,695	227.8	0 d	0	0
21. Chsomium, Ferro, Low Carbon ... ST	124,000	197.183	204.1	2,301 ${ }^{\text {d }}$	0	0
22. Chromium, Ferro, Silicon ST	69,000	58,356	34.4	0	10,644	0
23. Chromium, Metal ST	10,000	3,763	21.0	0	6,237	0
24. Cobalt IB Co	85,415,000	40,802,914	279.5	0	44,612,086	0
25. Columbium Carbide Powder ... IB Cb	0	21,372	0.4	$0{ }^{\text {e }}$	0	0
26. Cohumbium Concentrates IB Cb	3,131,000	1,780,244	8.1	0	177,657 ${ }^{\text {e }}$	0
27. Columbium, Ferro 1 IB Cb	0	930,911	4.8	$0{ }^{\text {e }}$	0	0
28. Columbiam, Meras 18 Cb	0	44,851	1.3	0^{*}	0	0

TABLE 2
INVENTORIES, GOALS, EXCESSES OR DEFICTS, AND BALANCE OF DISPOSAL AUTHORIZATIONS OF BASIC STOCKPILE MATERIALS (Continued)

March 31, 1978
(Market Value - Milions of Doilars)

Commodity	Unit	Goal'	Total Inventory ${ }^{2}$	Market Value ${ }^{2}$	Excess Adjusted for Offset ${ }^{4}$	Deficit Adjusted for Ofiset	polance of Dispored Authorization
29. Copper		1,299,000	21,690	\$ 28.4	0	1,277,310	0
30. Cordage Fibers, Abaca	LB	24,000,000	0	0	0	24,000,000	0
31. Cordage Fibers. Sisal		114,000,000	0	0	0	114,000,000	0
32. Diamond Dies, Small	PC	0	25,473	1.1	25,473	0	0
33. Diamond, Industrial,							
Crushing Bort . .	. KT	14,974,000	27,922,442	83.8	12,790,716	0	4,222,402
34. Diamond, Industrial, Stones	.KT	5,559,000	20,000,003	231.1	14,441,003	0	0
35. Feathers and Down	LB	6,494,000	0	0.2	0	6,494,000	0
36. Fluorspar, Acid Grade	. SDT	1,594,000	892,139	93.7	0	701,861	0
37. Fluorspar, Metallurgical Grade	. SDT	1,914,000	411,738	35.8	0	1,502,262	0
38. Graphite, Natural - Ceylon,							
A morphous Lump		6,271	5,499	2.3	0	772	0
39. Graphite, Natural -							
Malagasy, Crystalline		20,472	17.911	9.3	0	2,561	0
40. Graphite, Natural - Other than							
Ceylon \& Malagasy		34,748	2,802	0.5	0	31,946	0
41. Iodine	. LB	3,333,000	8,013,448	20.8	4,680,448	0	0
42. Jewel Bearings	PC	224,623,000	66,173,648	46.3	0	158,449,352	0
43. Lead.	ST	865,000	601,056	396.7	0	263,944	0
44. Manganese, Battery Grade,							
Natural Ore .	SDT	\$2,736	262,325	28.4	233,495	0	126,134
45. Manganese, Battery Grade,							
46. Marganese Ore, Chemical							
Grade		247,136	220,810	14.6	0	26,326	0
47. Manganese Ore, Metallurgical							
Grade .	SDT	2,052,000	3,644,179	166.4	1,346,581 ${ }^{\text {P }}$	0	1,029,197
48. Manganese, Ferto, High Carbon	. ST	439,000	599,763	213.9	160.763	0	0
49. Manganese, Ferro, Low Carbon	. ST	0	0	0	0	0	0
30. Manganese, Ferro, Medium							
Carbon		99,000	28,921	19.6	0	0^{8}	0
51. Manganese, Ferro, Silicon .		81,000	23,574	8.8	0	0^{8}	0

table 2
INVENTORIES, GOALS, EXCESSES OR DEFICITS, AND BALANCE OF DISPOSAL AUTHORIZATIONS OF BASIC STOCKPILE MATERIALS (Con\&inued)

March 31, 1978
(Market Value - Minlioss of Dollars)

Commodity Unit	Goal'	Tot: Inventory ${ }^{2}$	Market Value ${ }^{3}$	Excess Adjusted for Offet ${ }^{4}$	Deficit Adjusted for Ortsel	Beiance of Disposel Authorization
S2. Manganese, Metal, Electrolytic . . . ST	15,000	14,171	\$ 16.4	0	0^{8}	0
53. Mercury FL	54,004	200,058	29.5	146,054	0	0
54. Mica, Muscovite Block, Stained and Eetter \qquad LB	6,188,000	5,108,133	24.0	0	1,079,867	0
55. Mia, Muscovite Film, First and Sccond Qualities \qquad	90,000	1,273,434	15.0	1,183,434	0	7,135
56. Mica, Muscovite Splitings Is	12,631,000	21,981,718	11.0	9,350,718	0	2,802,086
57. Mia, Phlogopite Elock LB	206,064	130,745	. 06	0	75,319	0
S8. Mica, Phlogopite Splittings LB	932,000	2,821,115	2.4	1,889,115	0	1,857,275
59. Molybdenum Disulphide LB Mo	0	0	0	0	0	0
60. Molybdenum, Ferro LB Mo	0	0	0	0	0	0
61. Nickel ST Ni+Co	204,335	0	0	0	204,335	0
62. Opium. Gum AMA IB	0	31,795	7.2	$0^{\text {h }}$	0	0
63. Opium, Salt AMA LB	75,000	39.508	21.4	0	3,697 ${ }^{\text {h }}$	0
64. Platinum Group Metals,						
Iridiam Troi	97,761	16,990	5.1	0	80,771	0
65. Platinum Group Metas,						
Palladium Troz	2,450,000	1,255,004	87.8	0	1,194,996	0
66. Platinum Group Metals,						
Platinum Troz	1,314,000	452,642	96.2	0	861,358	0
67. Pyrethrum LB	377,851	0	0	0	377,851	0
63. Quartz Crystals LB	0	2,701,212	16.2	2,701,212	0	2,253,909
69. Quinidire Avoz	6,841,000	1,800,341	12.2	0	5,040,659	0
70. Quinine AVOz	3,045,000	3,246,164	15.2	201,164	0	0
71. Rubber . LT	513.134	119.202	121.5	0	393.932	0
72. Rutile S ST	173,928	39,186	12.2	0	134,742	0
73. Sapphire and Ruby KT	0	16,305,502	0.2	16,305,502	0	0
74. Shelhe LB	8,529,000	0	0	0	8.529.000	0
75. Silicon Carbide, Crude ST	306,628	80,366	22.9	0	226,262	0
76. Silver (Fine) Trioz	0	139,500,000	729.7	139,500,000	0	0
77. Talc, Steatite Block and Lump . . . ST	104	1,105	0.4	1,001	0	903
78. Tantalum Carbide PowdezLB Tz	389,000	28,688	1.2	0	860.312	0

TABLE 2

INVIENTORIES, GOALS, EXCESSES OR DEFICITS.
aND BALANCE OF DISPOSAL AUTHORIZATIONS OF BASIC STOCXPLLE MATERIALS (Continued)

March 31, 1978
(Market Value - Milions of Donams)

Commodity	Unit	Goal ${ }^{1}$	Total Inventory ${ }^{2}$	Market Value ${ }^{3}$	Exame Adjusted for Onfer ${ }^{4}$	Deficit Adjusted for Offet	Balance of Disposel Authorizstion
79. Tantalum Metal	.LB Tz	1,650,000	201,133	\& 10.2	0	1,448,867	0
80. Tantalum Minerals	.LB Ta	5,452,000	2,551,226	79.4	0	2,900,774	0
81. Thorium Nitrate	.. LB	1,800,000	7,221402	16.2	5,421,402	0	5,421,646
82. Tin	.. LT	32,499	200,659	2413.5	168,160	0	180
83. Titanium Sponge	.. ST	131,503	32,331	191.3	0	99,172.	0
84. Turgsten Carbide Powder	LBW	12,845,000	2,032,833	29.2	0	$0^{\text {i }}$	0
85. Tungrten, Ferro	LBW	17,769,000	2,025,491	22.5	0	0	0
86. Tungsten, Metal Powder	LB W	3,290,000	1,898,814	25.4	0	$0^{\text {i }}$	0
87. Tungsten Ores and							
Concentrates	. LB W	8,823,000	102,237,844	908.9	61,622,601 ${ }^{\text {i }}$	0	61,465,947
88. Vanadium, Ferto	.sT V	10,095	0	0	0	10,095	0
89. Vanadium Pentoxide	ST V	2,576	540	5.3	0	2,036	0
90. Vegetable Tarnin Extract,							
Chestnur .	.. LT	6,942	19,065	14.8	12,123	0	9,636
91. Vegetable Tannin Extract,							
QuebrachoiT	37,998	156,332	92.8	118,334	0	106,473
92. Vegetabie Tannin Extract,							
Watte	.. IT	20,208	16,397	8.4	0	3.811	0
93. Zinc	... ST	1,313,000	373,052	216.4	0	939,948	0

FOOTNOTES

[^3]L/4623/Add. 16
Page 14

Onfets

All conversion and processing loss factors, where applicable, bave been taken from the Office of Emergency Planning Strategic and Critical Materials Reference Data Booklet, dated November 1, 1966.
${ }^{8} 8,335,881$ LDT of surplus bauxite, metal grade, Jamsica type, were used to offset 3,748,562 ST of alumina shortfall. 5,299,597 LDT of surplus bauxite, metal grade, Surinam type, were used to offset an additional $\mathbf{2 , 7 6 1 , 6 2 1}$ ST of alumina shortfill. 1,684 ST of surplus aluminum metal were used to offset another 3,250 ST of alumina shortfall.
${ }^{6}{ }_{27,709}$ ST of suapius aiuminum oxide, fused, crude, were used to offset a 24,095 ST shortfall in aluminum oxide, abrasive grain.
$c_{13,319}$ ST of surpius beryl ore ($11 \% \mathrm{BeO}$) were used to offset 100% of the 9,323 ST shorifall of the beryllium copper master alloy. An sdditional 4,667 ST of surplus beryl ore were used to offset 117 ST of the beryllium metal shortiall.
$d_{166,693}$ ST of surplus chromium, ferro, higin carbon, weze used to offset 416,738 SDT of the chsomite, metallurgical grade ore, shorfall. Also $\mathbf{7 0 , 8 8 2}$ ST of sumplus chromium, fent, low carbon, were used to offset an additional 177,206 SDT shortiall of the chromite, metallurgical grade ore.
$\boldsymbol{e}_{21,372}$ LB of surplus columbium carbide powder were used to offset 25,144 LB of columbium concentrates shortfall. 44,851 LB of surplus columbium, metal, were used to offset 52,766 LB of columbium concentrates shortial. $930,911 \mathrm{LB}$ of surplus columbium, ferro, were used to offset $1,095,189$ LB of columbium concentrates shortall.
$\mathbf{P}_{16,094}$ SDT of surplus manganese, battery grade, natural ore were used to offset 16,094 SDT of manganese, battery grade, synthetic dioxide, shorffall on a $1 / 1$ basis.
*140.158 SDT of surplus manganess nere. metallurgical grade, were used 10 offset a shortfall of 70,079 ST of manganese, ferro, medium carbon. 103,367 SDT of surplus manganese ore, metallurgical grade, were used to offset a shorfall of 57,426 ST of manganese, ferro, gilicon. 2,073 SDT of surplus manganese ore, metallurgical grade, were used to offset a shortfall of 829 ST of manganese metal, electrolytic.
$h^{31,795}$ AMA LB of surplus opium gum were used to offset 31,795 AMA LB of opium salts shortfall on a $1 / 1$ basis.
${ }^{1} 13,028,661$ L.B of surplus tungsten ores and concentrates were used to offset a shortfall of $10,812,167$ LB of tungsten carbide powdes. 17.128,938 LB of surplus tungsten ores and concentrates were used to offset a shorfall of $15,743,509$ IB of tungsten, ferno. 1,634,644 LB of surplus tungsten ores and concentrates were used to offset a shortfall of $1,391,186 \mathrm{LB}$ of tungsten, metal powder.

Abbreviations

AMA LB	- Anhydrous Morphine Alkaloid (Pounds)	LCT	- Long Calcined Ton
AWOz	- Avoirdupois Ounce	LDT	- Long Dry Ton
FL	- Flask (76-Pound)	LT	- Long Ton
KT	- Carat	PC	- Piece
LB	- Pound	SDT	- Short Dry Ton
LBCb	- Pounds of Contained Columbium	ST.	- Shoriton
LB Co	- Pounds of Contained Cobalt	ST Ni+Co	- Short Tons of Contaized Nickel plus Cobalt
LB Mo	- Pounds of Contained Molybdenum	ST V	- Short Tons of Contained Vanadium
LB Ta	- Pounds of Contained Tantalum	TrOz	- Troy Ounces
LBW	- Pounds of Contained Tungsten		

OTHER MATERIALS IN GOVERNMENT INVENTORIES

Inventories of materials removed from the stockpile list are shown in table 3. Also included are materials acquired principally by transfer of Government-owned surpluses.

There are no stockpile goals for these materials. These inventories are not included in the previous tabulation.

TABLE 3
INVENTORIES
OF MATERIALS NOT ON THE LIST OF STRATEGIC AND CRITICAL MATERIALS ${ }^{1}$

March 31, 1978
(Market Value - Millions of Dollars)

Commodity Unit	Total Inventory ${ }^{2}$	Market Value ${ }^{3}$
Asbestos, Crocidolite ST	2,383	\$ 0.2
Celestite . SDT	14,407	0.4
Diamond Tools PC	113	0.0006
Kyanite-Mullite SDT	2,658	0.2
Magnesium ST	1,862	3.7
Mica, Muscovite Block, ST.B/lower LB	123,404	0.1
Mica, Muscovite Film, Third Quality LB	219,352	0.03
Rare Earths SDT ReO ${ }^{\text {\& }}$	4,090	4.2
Talc, Steatite Ground ST	2,389	0.01

${ }^{2}$ Disposal authorization exists for all of these inventories.
${ }^{2}$ Inventory reflects uncommitted balance.
${ }^{3}$ Market values are computed from prices at which comparable materials were being traded; or, in the absence of current trading, at an estimate of the price which would prevail in commercial markets. Market values are unadjusted for normal premiums and discounts relating to contained qualities or for inherent materials-handling allowances. The market values do not necessarily reflect the amount that would be realized at time of sale.
${ }^{4}$ ReO - Rare Earths Oxide.

C. GENERAL SERVICE ADMINISTRATION: DISPOSALS OF STRATEGIC AND CRITICAL MATERIALS January-June 1975

Material	Unit	Quantity	Sales Commitments		
			Coveramen: Use	Industrial Use	Total Sales Value

NATIONAL AND SUPPLIMENTAL STOCKPILE INVENTORIES:

			-	
Aluminum ST	10,967	5	S 8,796,427	\& 8,796,427
Asbestos, Amosite ST	4,360		1,447,989	1,447,989
Asbestos, Chrysotile ST	652		314,126	314,126
Cadmium LB	-4,200'		$-17,810^{1}$	-17,810'
Cobalt . LB	1,279,907		6,628,050	6,628,050
Columbium Ores and Concentrates LB	-131,966 ${ }^{1}$		-	-
Diamond, Industrial, Bort KT	1,269,88!		2,743,597	2,743,597
Diamond, Industrial, Stopes KT $^{\text {a }}$	799,067	3,096,500	5,076,549	8,171,049
Feathers and Down 1 .	340,677	1,191,759		1,193,759
Lead . ST	-2,756	-1,311,584'	245.980	-1,065,604
Manceanese, Battery Grade, Na:ural				
CreSTT	72		3,600	3,600
Narganese Ore, Chemical				
Grade, Type B SDT	3,050		210,180	210,180
Mica, Muscovite Bloik LB	109,464		190,501	190,501
Mica, Muscovite Film LB	8,730		29.988	29,985
Micz Muscovi: Splitiong LB	2,344,557		561,675	561,675
Msica, Phlogopite Flock LB	1,200		1.300	1,300
Molybdenun، Dieulplude LB	1,762,800		3,455,257	3,465,257
Molybdenum, Perro LB	291,048		859,735	859,735
Opivm, Gum . AvLE	11,234		1,195,670	1.195,670
Quartz Cn'stais . LB	155,200		815,936	815,906
Fare Eaths . SDT	1,050		911,636	911,636
Rubter LT	9,320		5,916,076	5,916.076
Silizon Critide, Crude ST	8,112		2,492,775	2,482,775
Taic, Steatitc, Block, and Lump ST	1		283	283
Tin . it	340		2,581,906	2,581,906
Tungrtan Ores and Concentrates LB	2,083,477		11,183,370	11,183,370
Vegetable Tansins:				
Chestrut . 1 LT	101		31,601	31,601
Quebracho IT	588	21,000	217,989	238,089
Watue . LT	1,173		467,584	467,584
Zinc ST	-1,735		-1,253,093 ${ }^{\text {1 }}$	-1,253.093'
Total National and supplemental,				
Stockpiles	\$2,995,675	\$ 55,117,947	\$ 58,113,622

dISPOSALS OF STRATEGIC AND CRTTICAL MATERLALS (Continued)
January-June 1975

	Quanity	Sales Commitments		
		Covernmens Use	Industriay Use	Total Sales Value
DEPENSE PRODUCTION ACT INVENTORY:			4	
Aluminium ST	1,417	\$	\$ 1,144,550	\$ 1,144,550
Manganese, MetallurgicalSDT	66,640		730,000	730,000
Mica,Muscovite BlockIB	116,907		326,940	326,940
Mica, Mescovite Film IB	964		3,478	3,478
Titanium \quad. ST	746		1,819,174	1,819,174
Tungsten Ores and Concentrates...LB	478,713		2,649,421	2,649,421
Iotal DPA	\$	S 6,673,563	\$ 6,673,563
O11II:R:				
Gold . Troz	754,80\%	S	\$ 93,179,960 ${ }^{\text {² }}$	¢ $93,179.960^{2}$
Lithinm LB	1,000		800	800
Meteury FL	501	162	112,080	112,242
Jotal OTHER		\$ 162	\$ 93,252,840	S 93,293,002
GRAND TOTAL.	\$2,995,837	\$155,084,350	\$158,080,187

- Negalive fifure represents adjustment of sales contraet in previous seport period.

[^4]July-Dreember 1975

			Sales Commi:micnts		
Material	Unit	Quantity	Government Use	$\begin{aligned} & \text { Industrial } \\ & \text { Use } \end{aligned}$	$\begin{gathered} \text { Total Sale } \\ \text { Value } \end{gathered}$

NATIONAL AND SUPPLEMENTAL STOCKPILE INVENTORIES:

Aluminum Oxide, Fused, Crude ST	1,000	\$	4 - 165,000	S 165,000
Asbestos, Amosite 5 ST	-262*		-91,594 ${ }^{\text {a }}$	-91,394'
Cadmium LB	-5,759		-14,09! ${ }^{1}$	-14,091'
Cobsit . LB	2,943,916		10,673,835	10,673,835
Columbium Ores and Concentrates LE	42,279		167,614	167,514
Diamond, Industria, Bort KT	1,059,500		2,209,939	2,209,939
Dismond, Industrial, Stones KT	270,650	92,879	4,077,587	4,170,466
Feathers and Down LB	599,545	2,195,037		2,195,037
Lead . ST	-1,173'	56,216	-558,283 ${ }^{1}$	-502,067
Manganese, Battery Grade, Nztural				
Ore . SDT	43,622		2,853,540	2,853,540
Manganese, Battery Grade, Synthetic				
Dioxide . SDT	50		22,500	22,500
Mangancse Ore, Chemical Grade,				
Type B SDT	15,000		967,500	967,500
Manganese, Metallurgical SDT	382,178		18,643,418	18,043,4i8
Mica, Muscovite Block IL	391,571		511,960	511,960
Mica, Msuscovite Fim LB	12,752		44,103	44,103
Mica, Muscovite Splitings LB	2,480,656		1,026,8\%1	1,026,571
Mics, Phlogopite Splittings LB	79,200		57,175	57,175
Molybdenum Disulphide LB			1,030,312 ${ }^{3}$	1,430,312 ${ }^{2}$
Molybdenum, Ferro LB			50,227 ${ }^{2}$	50,227 ${ }^{3}$
Molybdic Oxide LB			30,124 ${ }^{2}$	30,124 ${ }^{2}$
Opium, Gum AvLB	6,485		1,157,982	1,157,982.
Quartz Crystals . LB	44,804		208,407	208,407
silicon Carbide, Crude ST	29,675		8,374,723	8,374,723
Thorium Nitrate LB	1,400		3,150	3,150
Tin 17	245		1,695,008	1,695,008
Tungrsen Ores and Concentrates LB	1,485,613		7,247,706	7247,705
Vegetable Tannins:				
Chestnut IT	150		51,164	51,164
Quebracho LT	5,050		2,238,321	2,238,321
Watte . IT $^{\text {P }}$	2,621		1,125,566	1,125,566
Zine ST	-622 ${ }^{\text { }}$		-440,762'	-440,762'.
Total NATIONAL AND SUPPLEMENTAL				
STOCKPILES		32,344,132	\$ 63,529,202	\$ 65,873,334

dild

Materis	Unis	Quantity	Sazes Commitmentz		
			$\begin{gathered} \hline \text { Govenment } \\ \text { Use } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Industrial } \\ \text { Use. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Tctal Sale } \\ \text { Vajue } \end{gathered}$
DEFENSE PRODUCTION ACT INVENTORY:					
Columbium Ores and Concentrates	. LB	14,680	\$	S 33,000	\$ 33,000
Manganese, Melallurgical . .	SDT	24,999		- 998,433	998,433
		1,082,578		1,217,599	1,217,599
Mics, Muscovite Film LB	2,450		12,200	12,200
Tentalum Minerals ...		64,653		1,031,469	1,031,469
Tungsten Orcs and Concentrates..		86,754		421,361	421,361
Total DPA			\$	\$ 3,714,062	\$ 3,714,062
OTHER:					
Goid	TrOz	499,672	\$	\$ 61,373.54s	\$ $61.373,545^{3}$
Lithium		740,500		710.312	710,312
Total CTHER			\$	\$ 62,083,857	§ 62,083,857
GRAND TOTAL .			\$2,344,132	\$129,327,1?1	\$131,671.253

${ }^{2}$ Negative figure represents adjustment of sales cont:act in previous report period.
${ }^{9}$ Figure represents price adjustments to prior contract.
${ }^{3}$ Represents that portion of the total proceeds of Treasury gold in excess of the U.S. monetary value bined noll $\$ 42.2222$ per ounce. 499,672 ounces of gold were sold at an average price of $\$ 165.05$.

January-Dune 1976

January-June 1976

2 Represents adjustments to prior year coniracts.

TAbleiv

dISPOSALS OF STRATEGIC AND CRJTICAL MUTERIALS

July-September 1976

Material	Unit	Quantity	Sales Commitments		
			Govanment Use	$\begin{aligned} & \text { Industrizl } \\ & \text { Use } \end{aligned}$	Total S.sic Value

NATIONAL AND SUTPLEMFATAL STOCKPILE INVENTORIES:

Aluminum ST	278	s	\$	216,840	S 216,840
Asbestos, Amosite ST	150			51,750	51,750
Asbestos, Crocidolite ST	-991			-15,020 ${ }^{1}$: 15.020^{\prime}
Cotalt . LB	553,841			2,866,295	2,866,295
Copper Oxygen Free, High Conductivity ... ST	500	700,000			700,000
Corpir, OUler . ST	1,205	1,687,000			1,687,000
Diamond, Industrial, Bort KT	485,500			1,058,351	1,058,357
Diamond, Industrial, Stones KT		5,283,154			5,283,154 ${ }^{3}$
Miza, Muscovite Film LB	2,824			10.569	10,559
Rfics, Muscovitc Splittings LB	625,003			584,340	584,340
Mica, Phiopopite Splittings LB	88,481			53,002	55,002
Riolybdenum Disulphide LB	130.151			285,514	888.514
Mnlybsenum Oxide LB				5,600 ${ }^{1}$	3,600 ${ }^{1}$
Quart Crystals . LB	56.907			305,711	305.711
Rare Earths. SDI	28			8,611	8.611
Talc, S!ratite Block and Lump ST	30			9.200	9.200
Thorium Nitrple . LB	6,300			14,175	14,175
Tin . LT	350			2,853,480	2,853,.80
Turgiten Ores and Concentrates LB	614,451			4,224,677	<,274,677
Vegetsble Tannin:					
Qucbiacho 1 LT	63	29,666			29,666
Tota national and surplemental					
StOCKPPILES		\$7.699,820		3,138,101	\$ 20,837,921

DEFENSE PRODUCTION ACT INVENTORY:

גianzarese, Meidlurgical SDT	2.800	s	s	97.345	s	97,346
Mica, Muscovite Film LB	991			4,645		4,645
Tungsten Ores and Concenurates LB	756,518			5,353,145		5,333,145
Total DPA		5	\$	5,435,136	s	5,435,136

TABLEIV

DISPOSALS OF STRATEGIC AND CRJTICAL MATERIALS (Continuod)
July-September 1976

Material	Unit	Quentity	S.jes Commitments			
			Government Use		Industrial Use	Total Sale Va!ue
OTHER:						
Lithium		943,444	8	5	766,124	S 766.124
TOIS OTHER			5	\$	766,124	\$ 766.124
GRAND TOTAL			\$7.699.820		19.339.361	\$ 27.039.181

[^5]Industrial diamonds are the hardest naturally-occuring substance.

TABLE

SUMMARY OF GOVERNMENT INVENTORIES OF STRATEGIC AND CRITICAL MATERIALS

September 30, 1976

table II

SUNMMARY OF COVERNHENT INVENTORIES, ORECTIVTS, excesses and balance of disposal autiorizations

Basic Stockpile Matcrials
Sepiember 30, 1976
(Market Value - Minions of Dolars) ${ }^{-}$

Commodity Unit	Objective'	$\begin{gathered} \text { Total } \\ \text { Inventons } \end{gathered}$	Market Value ${ }^{3}$	Excess ${ }^{4}$	Marke? Vaine ${ }^{3}$	Bylance of Disposal Authorizzsion
. Aluminum ST	0	5,426	\$ 5.2	5,425	\$ 5.2	5,426 ${ }^{3}$
. Aluminum Oxide, Abrasive Grain . . ST	17,200	50,905	15.8	33,705	10.4	0
. Aluminum Oxide, Fuscd, Crude ... ST	0	249,009	14.9	249,009	44.9	0
. Antimony. ST	0	40,714	132.6	40,714	132.6	0
. Asbestos, Amosite ST	0	42.665	14.7	42,665	14.7	24.265
. Asliestos, Chrysotile ST	1,100	10.955	5.0	9,855	4.4	0
. Bauxite, Metal Gradc, Jamaica . . . LDT	4,638,000	8,858,881	213.9	$4,220,881$	101.9	1,370,077
i. Eauxite, Meial Grade, Surinam . . . LDT	0	5,397,000	153.2	5,300,000	153.2	0
I. Bauxite, Refractory LCT	0	173,000	20.4	173.000	20.4	0
). Beryl Ore ST	0	17.986	8.1	17,486	8.1	0
1. Bery Dium Coppe: Niaster Alloy ... LB	0	14.:73.731	45.4	14,773,731	45.4	0
2. Beryllium kictal ST	88	229	34.3	141	23.1	0
3. Bismuth it	95,539	2.051,250	15.6	1,985,3\%3	14.9	0
4. CadmpamLB	4,44C,500	6,328,955	19.0	1,882,455	5.6	322,25s
5. Castor O:1						
2. Castor Oil LB	0	0	0	0	0	0
b. Sebacic A.id LB	0	5,009.697	6.0	5,009,697	6.0	0
6. Thromite, Chemiul Grade SDT	8,400	250,000	12.7	241.600	12.3	0
17. Chromitc, Metallurgical SDT	484.710	2,484,655	26.11	2,039,945	208.7	0
18. Chromium, Ferro, Hinh Carbon ... ST	11.476	402.694	300.1	391218	2915	0
9. Chromjum. Fero, Low Carbon ... ST	0	318.893	374.1	318,893	374.1	0
20. Chromium, Ferro, Sulicon ST	0	58,356	42.0	58,356	42.0	0
11. Chromium, Metal ST	0	3.763	18.4	3.763	18.4	0
22. Chromitc, Refactory SDT	54,000	399.960	25.3	345.960	21.9	0
3. Cobalt LB	11.945.000	40.693.169	179.0	28.748.169	126.5	2,493.169
4. Coiumbium Coneentrates LB	0	1.751 .553	5.2	1.751 .553	5.2	0
25. Columinum Carbide Powder L	15.000	21,372	0.4	5,372	0.09	1.372
2u. Culimbium, Ferro 1 L:	7¢8,000	930.911	4.4	182.911	0.9	0
3. Conimemm, Mctal 18	36,000	44,851	1.1	8.851	0.2	0
Coxiuctin: ${ }^{\text {a }}$............. 5 ST	0	0	0	0	0	0
b. Otrer $\ldots . .$. ST	0	0	0	0	0	0

tarle n

SUMMARY OF COVERNMENT RNYENTORJES, OBFFCTIVES,

 EXCESSES ARD RALANCE OF DISTOSAL AUTHORIZATIONS (COntinued)Fivic Stoctpile Materials
September 30, 1976
(Marriket Value - Mifions of Dollers)

Commodity Uxit	Objective'	Total Inventory?	Market Value ${ }^{3}$	Excos	Market Valuc ${ }^{3}$	Balance of Disposal Authorizstion
29. Cordzge Fibers, Abaca 1 IB	0	0	\$ 0	0	\$ 0	0
30. Cordze Fibery Sisal LB	0	0	0	0	0	0
31. Diamond Diss, Small FC	7900	25.473	1.1	17,573	0.8	0
32. Dismond, Isdustrin.						
Crushing Bors KT	c	31,944.377	70.6	31,944,377	70.6	8,244,37
33. Dimmond, Industril, Stones KT	0	19.959.999	163.0	19,999.999	163.0	0
34. Fecthers and Dinaz IR	1,938,000	6:2.080	3.3	0	0	612,080 ${ }^{\circ}$
35. Fi,oisrav, Acid Grade SDT	0	889.991	93.4	889,991	93.4	0
36. Fmorspr, Hetasusyizal Grode . . . SDT	159,000	4i1:788	35.8	252,788	22.9	0
37. Graphite, Natural, Ceylon ST	3,100	5.499	2.3	2,395	1.0	0
38. Graphite, Nadural, Ala azasi ST	8,200	17.939	9.3	9,739	5.1	0
Crystailise ST	0	2,802	c. 5	2,8¢2	0.5	0
40. Iodine . Ln	0	8,011.698	20.7	8,011,698	20.7	\%
41. Jcu e! Bearines PC	62,740,000	45,222.612	28.5	0	0	0
42. Lead . ST	65,100	601,660	2975	535,560	265.3	71,162 ${ }^{3}$
43. Manganexe Batiery Grade, Natural						
Ort . SDT	$10.70{ }^{\prime}$	264.583	28.7	253,E33	27.3	129.583
48. Hianewexe. Banery Grads.						
Syrithelic DinxideSDT	0	3,038	1.4	3,008	1.4	1,108
45. 2laneadese Ore, Chemical Grade.						
Trpe^.................... SDT	12,300	14:586	9.5	132.786	8.7	110,586
46. Hanpares Ore. Chemical Grade.						
Type B..................... SDT	12800	75,410	5.1	62,610	4.2	40,410
47. Marpanere Ore. HeialturgialSDI	750.500	3.706,813	232.5	2,956.313	178.4	1,101.213
	200,000	600,000	227.7	400,000	151.8	0
49. Mraganer. Ferro, Low Carbon ... ST	0	0	0	0	0	0
50. Manganasx, Ferro, Medium						
ratbon....................... ST	10.500	$2 ¢ .920$	19.6	18.420	12.5	0
51. Manaxnex. Siticon ST	15.900	23,574	11.0	7,674	3.6	0
52. Nanpurs Metal Execudytic ST	4,750	14.166	16.4	9,416	10.9	0
53. MerauryFL	42,700	200,058	23.8	157.35 B	18.7	0

TABLE 31
SUMMARY OF GOVERNMENT BVENTORIES. OBJECTIVES, excesses and balance of disposal aumiorizations (Continued)

Basic Stockpile Materials
September 30, 1976
(Market Value - Millions of Dollars)

Commodity Unit	Objective ${ }^{\text {P }}$	Total Inventory ${ }^{2}$	Market V'alue’	Excess	Market Valuc ${ }^{3}$	Balance of Disposal Authorization
54. Mica, Muscovite Block, Siained and		\because				
Better . LB	1,600,000	5,108,133	\$ 27.2	3,508,133	\$ 16.3	0
S5. Mica, Muscovite Film, First and						
Second Qualities LB	413.000	1,346,605	15.8	933,605	10.9	78,826
56. Mijez, Muscovitc Splittings LB	2,200,000	23,084,075	27.7	20,884,075	25.1	4.024.200
57. Mica, Phlogopite Bloak LB	51,000	127.773	0.04	76,7!3	0.02	76,773
S8. Mica, Fhlogopite Splittings LB	200,000	3,183,323	3.8	2,983,37?	3.6	2.233,323
;9. Alulybderum						
a. A¢ulybsenum Disulphide LB	0	0	0	0	0	0
b. A olybdenum, Ferro LB	0	0	0	0	0	0
c. Molybdic Oxide LB	0	0	0	0	0	0
60. Nickicl .	0	0	0	0	0	0
61. Opium						
2. Opium, Gum LB	0	30,205	12.2	30.205	12.2	0
b. Opium, Sall LB	0	39.509	16.0	39.509	16.0	c
62. Platinum Group Mctals, hidium . TrOz	1.800	17.002	5.2	15.202	4.6	12
63. Platinum Group Mictis,						
Palladium Trozz	328,500	1. $25 \$.994$	72.2	926.404	53.3	0
64. Pistinum Gsoup Metals,						
Platinum Troz	187,500	452,645	79.2	265.145	46.4	0
65. Pyreihrim LB	0	0	0	0	0	0
66. Quariz Crystals LB	209,000	2,696,578	7.6	2,487.578	7.0	2,376,578
67. Quinidine OZ	1,059,000	1,800,356	14.8	741.356	6.1	0
68. Quinir.e OZ	779,500	3,246.166	20.1	2.466.666	15.3	0
69. Rubbes 1 LT	0	120.190	106.7	120,190	106.7	0
70. Rutilc SDT	0	39.186	11.8	39,186	11.8	0
.1. Sopphire snd Ruby R゙T $^{\text {a }}$	0	16.305,502	0.2	16,305,502	0.2	0
72. Sheldac IB	0	0	0	0	0	0
73. Silicon Carbide ST	0	80,619	22.9	80.619	22.9	80,619
74. Silver (T-ine)TrOz	21.063.000	139,500,000	585.9	117,837,000	494.9	0
75. Talc, Steatite Block and Lump . . . ST	0	1.119	0.4	1,119	0.4	919
76. Tantalum Carbide Powder LB	2,900	28,688	0.8	25,788	0.7	0°
77. Tantalum Metal LB	45,000	201.133	9.1	156,133	7.0	0

TABLE II
SEMMARY OF GOVERNMINT MTENTORIES, OEJECTINES, excesses and balance of disicsal authorizations (Continued)

Basic Stockpile Matcrials
September 30, 1976
(Market Value - Mfilions of Dollars)

Commodity Unit	Objective'	Total Inventory ${ }^{2}$	Market Valuc ${ }^{3}$	Excess ${ }^{4}$	Market Value ${ }^{3}$	Balance of Disposal Authorization
78. Tantalum Minerals LB	312,000	2,545,410	\$ 40.6	2,233,410	\$ 35.6	0
79. Thorium ST	0	3,637	9.1	3,637	9.1	3.550
80. Tin . LT	40.500	203.774	1.670 .6	163.274	1,338.6	3,148
81. Titanium Sponge ST	32,329	32,329	162.3	0	0	0
82. Tunesten Carbide Pouder LB	0	2,032,833	21.9	2,032.833	21.9	2,032,833
83. Tungsten, Fcrro LB	0	2,025,463	15.7	2,025,453	15.7	2,025,463
84. Tungrten, Metal Powder, Carbon						
Reduced 1 LB	0	716,910	7.2	716,910	7.2	716,910
85. Tungsten, Mctal Powder, Hydrogen						
Reduced LB	0	1,048,456	11.5	1,048,456	11.5	1,048,456
86. Tunizten Ores and Conientrates .. LD	4,234,000	10?,248,093	815.7	103.014,083	783.5	82.080,121
87. Variadium						
a. Vanadium, Ferin ST	0	0	0	0	0	0
b. Vanadium Pentovide ST	0	539	4.7	539	4.7	0
88. Vegetable 7 annin Latract,						
Chestnut. 1 LT	4,400	21,465	11.5	17,065	9.1	11,965
89. Vegetahle Tannin Extract.						
Quebracho LT	0	164,595	85.7	164.595	2j.i	113,995
90. Vegctable Tannin Extroct,						
Wattle . LT	0	18,021.	9.2	18.021	9.2	8,521
91. Zine S. $^{\text {T }}$	374,830	374,830	296.1	0	0	0

footnotes

[^6]Matice: values are estimated foom pries at whith similar matcials aze being traded; or, in the absence of trading data, at an estimate of Le: frix wheh would prevail in the maket. Frize; used are unadjusted for nomal premiums and discounts relating to containcd

OTHER MATERIALS IN GOVERNMENT INVENTORIES

Inventories of materials that have been removed from the stockpile list, and of other materials for wheci: there are no stockpile
objectives, are shown in Table III. These inventories are not included in the previous tabulation.

TABLE II

SUMMARY OF GOVERNMENT INVENTORIES ARD BALANCE OF DISPOSAL AUTHORIZATIONS COVERING MATERIALS FO: WHICH THERE ARE NO STOCKPILE OBJECTIVES

September 30.1976
(Market Value - Millions of Dollars)

Commodity	Unit	Total Inventory ${ }^{\text {a }}$	Market Value ${ }^{2}$	Balance of Disposal Authorization
Aneetos, Crocidolite	ST	2,354	\$ 0.2	2,384
Colesta	SITT	14.408	0.4	14,408
Demond Tools	PC	60.183	0.7	60,183
Kyanit Mullite	SDT	2,816	0.2	2,816
Magresium	ST	1,12i	2.1	1,121
Rare Earths	SDT	7,174	8.3	7,174
Sperm Oil	LB	18.243	0.006	18.24 .3
Tale, Sluatite Ground	ST	2.916	0.02	2,916

[^7]
STOCKPILE ACTIVITIES

Procurement

The Stratemic Stockpile Procurement Directive for FY 1976, issued August 28, 1975, provided for the cash procurement of two million picces of jewel bearings from the Government-owned William Langer Jewel Bearing Plant at Rolla, North Dakota. The plant, operated by the Bulova Watch Company, Inc., continued to produce jewel bearings for the Natignal Stockpile and for defense contiactors under the existing contract with GSA. Jewel Bearings and related items ordered from the plant for the defense program during the period July through September 1976, iotaled 486,799.

Orders for "relaied items" totaled 27,900 during the same period. These included items made from synthetic sapphize such as dumed pins, nlates. knife edges, vee grooves, spaccis, insulators, wirdows, and balls.

The piank continued to operate on a profitahle basis during the report period. Net income for the three-month period ending Septermer 50,1976 , amounted to $\$ 20,327$.

Disposal Program
During suly-September 1976, GSA disposal sales of excess strategic and critical materisls from all Government inventorics totaled S27.0 million. Of the total disposals of $\$ 27.0$ million, arproximately $\$ 20.8$ million were from the National and Supplemental

Stockpiles, $\$ 5.4$ million from the Defense Production Act inventory, and $\$ 0.8$ million from "other sales."

Major sales were of cobalt, $\$ 2.9$ million; tin, $\$ 2.9$ million; and tungsten ores and concentrates, $\$ 9.6$ million. The commodities and quantities making up the total sales for this period are listed in Table IV.

Cumulative fiscal year sales since the inception of the disposal progran tota! approximately $\$ 7.2$ billion. (Figures 1 and 2, pase 13.)

Storage and Maintenance

On September 30, 1976, GSA stored approximately 33 million tons of strategec materials at 121 locations as follows:

Military Depots 34
GSA Depots 28
Other Government-owned Sitcs 14
Leased Commercial Sites 12
Industrial Plaritsites 33
Total
121
Following heavy disposals of stockpile materials during the past few years, continued progress was made in storage consolidation in order to return unneeded warchouse space to the Public Buildings Service. Duing JulySeptember 1976, 240,000 sourare feet at GSA depots were vacated and returned to PBS .

Sales from CCC:stocks~-all unrestricted use (either domestic or export). none for export only

	TOMAL	DAIRY*	
July 1, 1974-June 30, 1975	\$114.0 M	\$1.7	butter
July 1, 1975-June 30, 1976	81.4 M	$\begin{aligned} & 32.8 \\ & 18.9 \end{aligned}$	NFDM butter
July 1, 1976-September 30, 1976	22.3	21.0	NFDM
October 1, 1976-September 30, 1977	43.7	35.3	NFDM

V. Reason Why No Foreign Trade Has Taken Place In Products Affected

B. Bureau of Mines

Exports of helium from the United States are about 130 million cubic feet a year. All such exports are by private traders, and practically all of the exported helium is produced by private companies. Exports of helium from the United States were 174 million cubic feet in calendar year 1976.
C. General Services Administration

Specific records with respect to exports are not kept on stockpile disposals. As explained previously, under its mandate to protect producers from disruption of their usual markets, whether in the U.S. or abroad, GSA may place certain export restrictions on certain specific materials when an analysis of the market conditions indicates that this is necessary. Most disposal sales to not have restrictions on export. Sales are usualiy made to both domestic and foreign buyers on a non-discriminatory basis.
VI. Adeitionaj Information
E. Burez: of hines

In Exaizo to the mozuction of helium for ourrent usess. the \because uga of nes maer authority of

 Fulod 1963.. 6aby depreted under--r. : ษ $\because 11$ De Furana, :A roid

 $\therefore \therefore$ furdty haiun for cireot sale to comercial as ars and distributors including exporters.

[^0]: */Explanatory note concerning transier of functions: The Energy Reorganization Act of 1974 (42 U.S.C. Sec. 5801, et seg) abolished the Atomic Energy Commission and established the Energy Research and Development Administration (ERDA) and the Nuclear Regulatory Commission (NRC). In general, that act transferred to the NRC the regulatory functions previously exercised by the AEC and vested ERDA with research and development functions, including the uranium enrichment function previously exercised by AEC as well as the responsibility for distributing source, byproduct, and special nuclear material. Under the Department of Energy Organization Act (P.L. 95-91, August 4, 1977) all of the functions of ERDA were transferred to the Department of Energy (DOE), which that Act established (DOE came into existence on October 1 , 1977).

[^1]: **/DOE may not distribute any special nuclear material or source material, other than under an export license issued by the NRC, until i) DOE has obtained the concurrence of the Department of State and has consulted with the Arms Control and Disarmament Agency, the Nuclear Regulatory Commission and the Department of Defense under mutually agreed procedures and 2) DOE Finds that the criteria in 42 U.S.C. Sec. 2156 and any applicable criteria in 42 U.S.C. 2157 are met and that the proposed distribution would not be inimical to the common defense and security.

[^2]: ${ }^{1}$ Market values are computed from prices at which comparable materials were being traded; or, in the absence of current trading, at an estimate of the price which would prevail in commercial markets. Market values are unadjusted for normal premiums and discounts relating to contained qualities, or for inherent materials-handling allowances. Market values do not necessarily reflect the amount that would be realized at time of sale.

[^3]: ${ }^{2}$ Stockpile goals extablished as of October 1, 1976. In some cases, where the stockpile grade material on hand was insulicient to meet goals, nonstockpile grade material has been temporarily applied. Future anslycis may result in changes to material selections.
 ${ }^{2}$ Tótal inventory consists of stockpile and nonstockpie grdes and reflects uncommitted balance.
 ${ }^{3}$ Mirket values are computed from prices at which comparable materials are being traded; or, in the absence of current trading, at an estimate of the price which would prevail in commercial markets. Market values are unadjusted for normal premiums and discounts relating to contained qualities or for inherent material-handling allowances. The market values do not necesamily reflect the amount shat would be realized at time of sele.
 ${ }^{4}$ Includes excesi materiak for which Congressional disposml begislation was pending.
 ${ }^{3}$ ineludes 528,225 SDT of nonstockpile grade material not credited toward goal.

[^4]: 'Represents that purtion of the tetal proceeds of Treasury gold in excess of the U. S. monetary value based on $\$ 42.2222$ per ounce. 754,800 ounce; of gold were sold at an average price of $\$ 165.67$.

[^5]: ${ }^{2}$ Repiesents acjastmerits to prior jear contracts.

[^6]: ${ }^{2}$ These ohjectives do not reflect the result:o: the :-athile sedy anncunced Ocinbe: 1, 1976.

[^7]: 'Inventory reflects uncommintici baiance.
 2 Market values are estimated fiom prices at which similar materials are being traded; or, in the absence of trading data, at an estimate of the price which would prevail in the mariet. Prices used are unabusted for nomima promiums and discounts relatins to contained qualitics or normal freight allowances, The market values do not necessarily reflect the amount that would be realized at time of sole.

